Math $545 \quad$ Solution of Midterm $1 \quad$ Spring 2007

1. (10 points) Let V be an n-dimensional vector space over the field \mathbb{R} and let $T: V \rightarrow \mathbb{R}^{2}$ be a linear transformation from V to \mathbb{R}^{2}. Prove that if T is not the zero transformation and T is not onto, then $\operatorname{dim}(n u l l(T))=n-1$, where $\operatorname{null}(T):=\{v \in V: T(v)=0\}$.
Answer: (Compare with problem 5 page 108 in the text). The subspace $T(V)$ of \mathbb{R}^{2} has dimension $0<\operatorname{dim}(T(V))<2$, since T is not the zero transformation and T is not onto. Hence $\operatorname{dim}(T(V))=1$. The Fundamental Theorem of Linear Algebra states, that

$$
\operatorname{dim}(n u l l(T))+\operatorname{dim}(T(V))=\operatorname{dim}(V)
$$

Hence, $\operatorname{dim}(\operatorname{null}(T))=\operatorname{dim}(V)-\operatorname{dim}(T(V))=n-1$.
2. (10 points) Determine whether there exists a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$, satisfying $T(1,1,1)=(1,2), T(1,2,1)=(1,1)$, and $T(2,1,2)=(2,1)$. Justify your answer!
Answer: (Compare with Problem 11 page 107 in the text). First check if there are any non-trivial linear relations among the three vectors in \mathbb{R}^{3}, by forming the 3×3 matrix A, with these vectors as columns, so that the coefficient vector of any linear relation among them is a solution of $A x=0$. Row reducing, we get:

$$
A=\left(\begin{array}{lll}
1 & 1 & 2 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right) \sim \cdots \sim\left(\begin{array}{ccc}
1 & 0 & 3 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right)
$$

The general solution is $\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=x_{3}\left(\begin{array}{c}-3 \\ 1 \\ 1\end{array}\right)$. We get the linear relation:
$-3(1,1,1)+(1,2,1)+(2,1,2)=(0,0,0)$. If T exists and we apply T to both sides of the above relation, we get

$$
-3(1,2)+(1,1)+(2,1)=(0,0)
$$

The left hand side is $(0,-4)$, so such a T does not exist.
3. (20 points) Let V be the vector space of all polynomial functions

$$
f(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}
$$

of degree ≤ 3 with real coefficients c_{i}, and $T: V \rightarrow V$ the linear transformation

$$
T(f)=(x+1) \frac{\partial f}{\partial x}-f
$$

sending f to $(x+1)$ times its derivative minus f itself.
(a) (10 points) Find the matrix $[T]_{\beta}$ in the basis $\beta=\left\{1, x, x^{2}, x^{3}\right\}$ of V.

Answer: (Compare with Problem 3 page 108 in the text).

$$
\begin{aligned}
{[T]_{\beta} } & =\left([T(1)]_{\beta}[T(x)]_{\beta}\left[T\left(x^{2}\right)\right]_{\beta}\left[T\left(x^{3}\right)\right]_{\beta}\right) \\
& =\left([-1]_{\beta}[1]_{\beta}\left[2 x+x^{2}\right]_{\beta}\left[3 x^{2}+2 x^{3}\right]_{\beta}\right)=\left(\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 2
\end{array}\right)
\end{aligned}
$$

(b) (3 points) Find a basis for the null space $\operatorname{null}(T):=\{f: T(f)=0\}$. Justify your answer!
Answer: The row reduced echelon form of $[T]_{\beta}$ is $B:=\left(\begin{array}{cccc}1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$.
The general solution of $B x=0$ is $\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right)=x_{2}\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right)$, which is the subspace
spanned by the coordinate vector $[1+x]_{\beta}$. Hence, $\operatorname{null}(T)$ is spanned by $1+x$.
(c) (2 points) Determine the rank of T.

Answer: The rank of T is equal to the rank of its matrix $[T]_{\beta}$, which is equal to the rank of its reduced echelon form B, which is 3 .
(d) (5 points) Find a basis for the image $T(V)$ of T (consisting of polynomials!!!). Answer: The pivot columns of the reduced echelon form B are the first, third, and fourth. Hence, the first, third, and fourth columns of the matrix $[T]_{\beta}$ are a basis for the column space of $[T]_{\beta}$. Thus, $T(1), T\left(x^{2}\right), T\left(x^{3}\right)$ form a basis for $T(V)$. We calculated above that these three vectors are $-1,2 x+x^{2}$, $3 x^{2}+2 x^{3}$. There are many other correct answers.
4. (20 points) Let V be a finite dimensional vector space over the real numbers, with an inner product. Recall that a linear transformation $T: V \rightarrow V$ is called an orthogonal transformation, if it preserves length, i.e., $\|T(v)\|=\|v\|$, for all $v \in V$.
(a) (10 points) Prove that the product $T S$, of two orthogonal transformations T and S, is an orthogonal transformation.
Answer: Compare with problem 7 page 129. $T S(v)=T(S(v))$, so $\|T S(v)\|=\|T(S(v))\|=\|S(v)\|=\|v\|$, where the second equality is due to the assumption, that T is orthogonal, and the last equality is due to S being orthogonal.
(b) (10 points) Let T be an orthogonal transformation of V. Show that $\operatorname{det}(T)$ is equal to 1 or -1 .
Answer: Compare with problem 5 page 150. Let $\beta=\left\{u_{1}, \ldots, u_{n}\right\}$ be an orthonormal basis for V. The matrix $A:=[T]_{\beta}$ satisfies $\left({ }^{t} A\right) A=I$ (the transpose of A is equal to the inverse of A), by Theorem 15.11 page 127 . Recall that $\operatorname{det}(A)=\operatorname{det}\left({ }^{t} A\right)$. Hence,

$$
1=\operatorname{det}(I)=\operatorname{det}\left(\left({ }^{t} A\right) A\right)=\operatorname{det}\left({ }^{t} A\right) \operatorname{det}(A)=(\operatorname{det}(A))^{2} .
$$

Thus, $\operatorname{det}(T)=\operatorname{det}(A)= \pm 1$.
5. (20 points) Let $v_{1}=(1,1,0), v_{2}=(1,0,1)$, and $v_{3}=(1,1,1)$.
(a) (8 points) Use the Gram-Schmidt process, and the above basis $\left\{v_{1}, v_{2}, v_{3}\right\}$ of \mathbb{R}^{3}, to find an orthonormal basis $\left\{u_{1}, u_{2}, u_{3}\right\}$ of \mathbb{R}^{3}, such that $\operatorname{span}\left\{v_{1}, \ldots, v_{r}\right\}=$ $\operatorname{span}\left\{u_{1}, \ldots, u_{r}\right\}$, for $1 \leq r \leq 3$.
Answer: (Compare with problem 1 page 129) $u_{1}=\frac{v_{1}}{\left\|v_{1}\right\|}=\frac{1}{\sqrt{2}}(1,1,0)$. $v_{2}-\left(v_{2}, u_{1}\right) u_{1}=(1,0,1)-\frac{1}{2}(1,1,0)=\frac{1}{2}(1,-1,2)$. Normalize to get

$$
\begin{aligned}
& u_{2}=\frac{(1,-1,2)}{\|(1,-1,2)\|}=\frac{1}{\sqrt{6}}(1,-1,2) . \\
& v_{3}-\left(v_{3}, u_{1}\right) u_{1}-\left(v_{3}, u_{2}\right) u_{2}=(1,1,1)-(1,1,0)-\frac{1}{3}(1,-1,2)=\frac{1}{3}(-1,1,1) . \\
& u_{3}=\frac{(-1,1,1)}{\|(-1,1,1)\|}=\frac{1}{\sqrt{3}}(-1,1,1) .
\end{aligned}
$$

(b) (4 points) State the definition of an orthonormal basis, and check that the basis you found in part 5a is orthonormal.
Answer: An orthonormal basis for an n-dimensional vector space is a set of n vector $\left\{u_{1}, \ldots, u_{n}\right\}$, satisfying $\left(u_{i}, u_{i}\right)=1$, for all i, and $\left(u_{i}, u_{j}\right)=0$, if $i \neq j$. Two points were given for the check of your answer in part 5 a.
(c) (4 points) Find the distance from the vector v_{3} to the plane spanned by $\left\{v_{1}, v_{2}\right\}$. (these vectors are given at the beginning of problem 5).
Answer: Compare with problem 13 page 131. The plane P spanned by $\left\{v_{1}, v_{2}\right\}$ is also spanned by $\left\{u_{1}, u_{2}\right\}$. We need an orthonormal basis for P in order to compute the projection $\hat{v}_{3}:=\left(v_{3}, u_{1}\right) u_{1}+\left(v_{3}, u_{2}\right) u_{2}$ of v_{3} to P!!! We get

$$
\hat{v}_{3}:=\left(v_{3}, u_{1}\right) u_{1}+\left(v_{3}, u_{2}\right) u_{2}=(1,1,0)+\frac{1}{3}(1,-1,2)=\frac{2}{3}(2,1,1) .
$$

But, in fact, we need the difference $v_{3}-\hat{v}_{3}$, which was already calculated in part 5a. The distance is $\left\|v_{3}-\hat{v}_{3}\right\|=\left\|\frac{1}{3}(-1,1,1)\right\|=\frac{1}{3}\|(-1,1,1)\|=\frac{1}{\sqrt{3}}$.
(d) (4 points) Explain how to read, from the orthonormal basis you found in part 5 a, without any further computations, the equation of the plane spanned by $\left\{v_{1}, v_{2}\right\}$.
Answer: Compare with part (a) of problem 11 page 130. The vector u_{3} is orthogonal to the plane P spanned by $\left\{u_{1}, u_{2}\right\}$, which is equal to the plane spanned by $\left\{v_{1}, v_{2}\right\}$. Hence the plane P is equal to $\left\{v:\left(v, u_{3}\right)=0\right\}$. Using dot product, it becomes

$$
P=\left\{\left(x_{1}, x_{2}, x_{3}\right): \frac{1}{\sqrt{3}}\left(-x_{1}+x_{2}+x_{3}\right)=0\right\}
$$

or simply $-x_{1}+x_{2}+x_{3}=0$.
6. (20 points) Let V be an n-dimensional vector space with an inner product and u a unit vector in V (so that $(u, u)=1$). Let u^{\perp} be the subspace $\{v \in V:(v, u)=0\}$, orthogonal to u. Recall that the reflection $R_{u}: V \rightarrow V$, of V with respect to u^{\perp}, is given by

$$
R_{u}(v)=v-2(v, u) u .
$$

(a) (8 points) Prove that R_{u} is a linear transformation (it is also easy to show that R_{u} is an orthogonal transformation, but you are not asked to show it).
Answer: Check the two properties in the definition of a linear transformation: 1) For every two vectors $v_{1}, v_{2} \in V$ we have

$$
\begin{aligned}
R_{u}\left(v_{1}+v_{2}\right) & =v_{1}+v_{2}-2\left(v_{1}+v_{2}, u\right) u=v_{1}+v_{2}-2\left(v_{1}, u\right) u-2\left(v_{2}, u\right) u \\
& =\left[v_{1}-2\left(v_{1}, u\right) u\right]+\left[v_{2}-2\left(v_{2}, u\right) u\right]=R_{u}\left(v_{1}\right)+R_{u}\left(v_{2}\right)
\end{aligned}
$$

2) For every $\lambda \in \mathbb{R}$ and every $v \in V$, we have

$$
R_{u}(\lambda v)=\lambda v-2(\lambda v, u) u=\lambda v-2 \lambda(v, u) u=\lambda[v-2(v, u) u]=\lambda R_{u}(v)
$$

(b) (4 points) Let u_{1} and u_{2} be two unit vectors in V. Show that if $\left(u_{1}, u_{2}\right)=0$, then $R_{u_{1}} R_{u_{2}}=R_{u_{2}} R_{u_{1}}$. In other words, the two reflections commute, if the two unit vectors are orthogonal.
Answer: We need to prove the equality $R_{u_{1}} R_{u_{2}}(v)=R_{u_{2}} R_{u_{1}}(v)$ for every vector v in V.

$$
\begin{aligned}
R_{u_{1}} R_{u_{2}}(v) & =R_{u_{1}}\left(R_{u_{2}}(v)\right)=R_{u_{1}}\left(v-2\left(v, u_{2}\right) u_{2}\right)= \\
& =\left[v-2\left(v, u_{2}\right) u_{2}\right]-2\left(\left[v-2\left(v, u_{2}\right) u_{2}\right], u_{1}\right) u_{1} \\
& =v-2\left(v, u_{2}\right) u_{2}-2\left(v, u_{1}\right) u_{1}+4\left(v, u_{2}\right)\left(u_{2}, u_{1}\right) u_{1} \\
& =v-2\left(v, u_{2}\right) u_{2}-2\left(v, u_{1}\right) u_{1} .
\end{aligned}
$$

The last equality uses the vanishing $\left(u_{2}, u_{1}\right)=0$. Now the last term we got is symmetric in u_{1} and u_{2} and so is equal also to $R_{u_{2}} R_{u_{1}}(v)$.
(c) (8 points) Let $V=\mathbb{R}^{2}$, with the standard inner product (the dot product), and set $u=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$. Find the matrix $\left[R_{u}\right]_{\beta}$, of the reflection R_{u}, with respect to the basis $\beta=\left\{\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right),\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)\right\}$. Justify your answer!

Answer: Compare with part b.iii of the additional problem to section 18. (Parts b.i and b.ii of that problem were added after the exam for future semesters). Set $u_{1}:=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ and $u_{2}:=\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$. Then $R_{u}\left(u_{1}\right)=u_{1}-2\left(u_{1}, u\right) u=u_{1}-2\left(u_{1}, u_{1}\right) u_{1}=-u_{1}$ and $R_{u}\left(u_{2}\right)=u_{2}-2\left(u_{2}, u\right) u=u_{2}-0=u_{2}$. We get

$$
\left[R_{u}\right]_{\beta}=\left(\left[R_{u}\left(u_{1}\right)\right]_{\beta}\left[R_{u}\left(u_{2}\right)\right]_{\beta}\right)=\left(\left[-u_{1}\right]_{\beta}\left[u_{2}\right]_{\beta}\right)=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) .
$$

