1. (10 points) Let V be an n-dimensional vector space over the field \mathbb{R} and let $T : V \to \mathbb{R}^2$ be a linear transformation from V to \mathbb{R}^2. Prove that if T is not the zero transformation and T is not onto, then $\dim(\text{null}(T)) = n - 1$, where $\text{null}(T) := \{ v \in V : T(v) = 0 \}$.

Answer: (Compare with problem 5 page 108 in the text). The subspace $T(V)$ of \mathbb{R}^2 has dimension $0 < \dim(T(V)) < 2$, since T is not the zero transformation and T is not onto. Hence $\dim(T(V)) = 1$. The Fundamental Theorem of Linear Algebra states, that

$$
\dim(\text{null}(T)) + \dim(T(V)) = \dim(V).
$$

Hence, $\dim(\text{null}(T)) = \dim(V) - \dim(T(V)) = n - 1$.

2. (10 points) Determine whether there exists a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^2$, satisfying $T(1,1,1) = (1,2)$, $T(1,2,1) = (1,1)$, and $T(2,1,2) = (2,1)$. Justify your answer!

Answer: (Compare with Problem 11 page 107 in the text). First check if there are any non-trivial linear relations among the three vectors in \mathbb{R}^3, by forming the 3×3 matrix A, with these vectors as columns, so that the coefficient vector of any linear relation among them is a solution of $Ax = 0$. Row reducing, we get:

$$
A = \begin{pmatrix}
1 & 1 & 2 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{pmatrix}
\sim \cdots \sim
\begin{pmatrix}
1 & 0 & 3 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{pmatrix}.
$$

The general solution is

$$
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix} = x_3
\begin{pmatrix}
-3 \\
1 \\
1
\end{pmatrix}.
$$

We get the linear relation:

$$
-3(1,1,1) + (1,2,1) + (2,1,2) = (0,0,0).
$$

If T exists and we apply T to both sides of the above relation, we get

$$
-3(1,2) + (1,1) + (2,1) = (0,0).
$$

The left hand side is $(0, -4)$, so such a T does not exist.

3. (20 points) Let V be the vector space of all polynomial functions

$$
f(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3
$$

of degree ≤ 3 with real coefficients c_i, and $T : V \to V$ the linear transformation

$$
T(f) = (x + 1) \frac{\partial f}{\partial x} - f
$$

sending f to $(x + 1)$ times its derivative minus f itself.

(a) (10 points) Find the matrix $[T]_\beta$ in the basis $\beta = \{1, x, x^2, x^3\}$ of V.

Answer: (Compare with Problem 3 page 108 in the text).

$$
[T]_\beta = ([T(1)]_\beta[T(x)]_\beta[T(x^2)]_\beta[T(x^3)]_\beta)
= \left([-1]_\beta [1]_\beta [2x + x^2]_\beta [3x^2 + 2x^3]_\beta \right) =
\begin{pmatrix}
-1 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 2
\end{pmatrix}
$$
5. (20 points) Let \(\langle \rangle \) be an inner product.
(a) (8 points) Use the Gram-Schmidt process, and the above basis \(\{v_1, v_2, v_3\} \) of \(\mathbb{R}^3 \), to find an orthonormal basis \(\{u_1, u_2, u_3\} \) of \(\mathbb{R}^3 \), such that \(\text{span}\{v_1, \ldots, v_r\} = \text{span}\{u_1, \ldots, u_r\} \), for \(1 \leq r \leq 3 \).

Answer: \((\text{Compare with problem 1 page 129}) \) \(u_1 = \frac{v_1}{\|v_1\|} = \frac{1}{\sqrt{2}}(1, 1, 0) \).
\(v_2 - (v_2, u_1)u_1 = (1, 0, 1) - \frac{1}{2}(1, 1, 0) = \frac{1}{2}(1, -1, 2) \). Normalize to get

(b) (3 points) Find a basis for the null space \(\text{null}(T) := \{ f : T(f) = 0 \} \). Justify your answer!

Answer: The row reduced echelon form of \([T]_{\beta} \) is \(B := \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \).

The general solution of \(Bx = 0 \) is \(\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = x_2 \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \), which is the subspace spanned by the coordinate vector \([1+x]_{\beta} \). Hence, \(\text{null}(T) \) is spanned by \(1 + x \).

(c) (2 points) Determine the rank of \(T \).

Answer: The rank of \(T \) is equal to the rank of its matrix \([T]_{\beta} \), which is equal to the rank of its reduced echelon form \(B \), which is 3.

(d) (5 points) Find a basis for the image \(T(V) \) of \(T \) (consisting of polynomials!!!).

Answer: The pivot columns of the reduced echelon form \(B \) are the first, third, and fourth. Hence, the first, third, and fourth columns of the matrix \([T]_{\beta} \) are a basis for the column space of \([T]_{\beta} \). Thus, \(T(1), T(x^2), T(x^3) \) form a basis for \(T(V) \). We calculated above that these three vectors are \(-1, 2x + x^2, 3x^2 + 2x^3 \). There are many other correct answers.

4. (20 points) Let \(V \) be a finite dimensional vector space over the real numbers, with an inner product. Recall that a linear transformation \(T : V \to V \) is called an orthogonal transformation, if it preserves length, i.e., \(\|T(v)\| = \|v\| \), for all \(v \in V \).

(a) (10 points) Prove that the product \(TS \), of two orthogonal transformations \(T \) and \(S \), is an orthogonal transformation.

Answer: Compare with problem 7 page 129. \(TS(v) = T(S(v)) \), so
\(\|TS(v)\| = \|T(S(v))\| = \|S(v)\| = \|v\| \), where the second equality is due to the assumption, that \(T \) is orthogonal, and the last equality is due to \(S \) being orthogonal.

(b) (10 points) Let \(T \) be an orthogonal transformation of \(V \). Show that \(\det(T) \) is equal to \(1 \) or \(-1 \).

Answer: Compare with problem 5 page 150. Let \(\beta = \{u_1, \ldots, u_n\} \) be an orthonormal basis for \(V \). The matrix \(A := [T]_{\beta} \) satisfies \((t^*A)A = I \) (the transpose of \(A \) is equal to the inverse of \(A \)), by Theorem 15.11 page 127. Recall that \(\det(A) = \det(t^*A) \). Hence,
\[1 = \det(I) = \det((t^*A)A) = \det(t^*A) \det(A) = (\det(A))^2. \]
Thus, \(\det(T) = \det(A) = \pm 1 \).

5. (20 points) Let \(v_1 = (1, 1, 0) \), \(v_2 = (1, 0, 1) \), and \(v_3 = (1, 1, 1) \).

(a) (8 points) Use the Gram-Schmidt process, and the above basis \(\{v_1, v_2, v_3\} \) of \(\mathbb{R}^3 \), to find an orthonormal basis \(\{u_1, u_2, u_3\} \) of \(\mathbb{R}^3 \), such that \(\text{span}\{v_1, \ldots, v_r\} = \text{span}\{u_1, \ldots, u_r\} \), for \(1 \leq r \leq 3 \).

Answer: \((\text{Compare with problem 1 page 129}) \) \(u_1 = \frac{v_1}{\|v_1\|} = \frac{1}{\sqrt{2}}(1, 1, 0) \).
\(v_2 - (v_2, u_1)u_1 = (1, 0, 1) - \frac{1}{2}(1, 1, 0) = \frac{1}{2}(1, -1, 2) \). Normalize to get
\[u_2 = \frac{(1,1,2)}{\| (1,1,2) \|} = \frac{1}{\sqrt{6}} (1, -1, 2). \]
\[v_3 - (v_3, u_1)u_1 - (v_3, u_2)u_2 = (1, 1, 1) - (1, 1, 0) - \frac{1}{3}(1, -1, 2) = \frac{1}{3}(-1, 1, 1). \]
\[u_3 = \frac{(-1,1,1)}{\|(-1,1,1)\|} = \frac{1}{\sqrt{3}} (-1, 1, 1). \]

(b) (4 points) State the definition of an orthonormal basis, and check that the basis you found in part 5a is orthonormal.

Answer: An orthonormal basis for an n-dimensional vector space is a set of n vector \(\{u_1, \ldots, u_n\} \), satisfying \((u_i, u_i) = 1 \), for all \(i \), and \((u_i, u_j) = 0 \), if \(i \neq j \). Two points were given for the check of your answer in part 5a.

(c) (4 points) Find the distance from the vector \(v_3 \) to the plane spanned by \(\{v_1, v_2\} \). (these vectors are given at the beginning of problem 5).

Answer: Compare with problem 13 page 131. The plane \(P \) spanned by \(\{v_1, v_2\} \) is also spanned by \(\{u_1, u_2\} \). We need an orthonormal basis for \(P \) in order to compute the projection \(\hat{v}_3 := (v_3, u_1)u_1 + (v_3, u_2)u_2 \) of \(v_3 \) to \(P \)!!! We get
\[\hat{v}_3 := (v_3, u_1)u_1 + (v_3, u_2)u_2 = (1, 1, 0) + \frac{1}{3}(1, -1, 2) = \frac{2}{3}(2, 1, 1). \]
But, in fact, we need the difference \(v_3 - \hat{v}_3 \), which was already calculated in part 5a. The distance is \(\| v_3 - \hat{v}_3 \| = \frac{1}{\sqrt{3}}(-1, 1, 1) = \frac{1}{\sqrt{3}} \).

(d) (4 points) Explain how to read, from the orthonormal basis you found in part 5a, without any further computations, the equation of the plane spanned by \(\{v_1, v_2\} \).

Answer: Compare with part (a) of problem 11 page 130. The vector \(u_3 \) is orthogonal to the plane \(P \) spanned by \(\{u_1, u_2\} \), which is equal to the plane spanned by \(\{v_1, v_2\} \). Hence the plane \(P \) is equal to \(\{v : (v, u_3) = 0\} \). Using dot product, it becomes
\[P = \{(x_1, x_2, x_3) : \frac{1}{\sqrt{3}}(-x_1 + x_2 + x_3) = 0\}, \]
or simply \(-x_1 + x_2 + x_3 = 0\).

6. (20 points) Let \(V \) be an n-dimensional vector space with an inner product and \(u \) a unit vector in \(V \) (so that \((u, u) = 1 \)). Let \(u^\perp \) be the subspace \(\{v \in V : (v, u) = 0\} \), orthogonal to \(u \). Recall that the reflection \(R_u : V \to V \), of \(V \) with respect to \(u^\perp \), is given by
\[R_u(v) = v - 2(v, u)u. \]

(a) (8 points) Prove that \(R_u \) is a linear transformation (it is also easy to show that \(R_u \) is an orthogonal transformation, but you are not asked to show it).

Answer: Check the two properties in the definition of a linear transformation: 1) For every two vectors \(v_1, v_2 \in V \) we have
\[R_u(v_1 + v_2) = v_1 + v_2 - 2(v_1 + v_2, u)u = v_1 + v_2 - 2(v_1, u)u - 2(v_2, u)u \]
\[= [v_1 - 2(v, u)u] + [v_2 - 2(v_2, u)u] = R_u(v_1) + R_u(v_2). \]
2) For every \(\lambda \in \mathbb{R} \) and every \(v \in V \), we have
\[R_u(\lambda v) = \lambda v - 2(\lambda v, u)u = \lambda v - 2\lambda (v, u)u = \lambda [v - 2(v, u)u] = \lambda R_u(v). \]
(b) (4 points) Let u_1 and u_2 be two unit vectors in V. Show that if $(u_1, u_2) = 0$, then $R_{u_1} R_{u_2} = R_{u_2} R_{u_1}$. In other words, the two reflections commute, if the two unit vectors are orthogonal.

Answer: We need to prove the equality $R_{u_1} R_{u_2}(v) = R_{u_2} R_{u_1}(v)$ for every vector v in V.

$$
R_{u_1} R_{u_2}(v) = R_{u_1}(R_{u_2}(v)) = R_{u_1}(v - 2(v, u_2)u_2) =
$$

$$
= [v - 2(v, u_2)u_2] - 2([v - 2(v, u_2)u_2], u_1) u_1
$$

$$
= v - 2(v, u_2)u_2 - 2(v, u_1)u_1 + 4(v, u_2)(u_2, u_1) u_1
$$

$$
= v - 2(v, u_2)u_2 - 2(v, u_1)u_1.
$$

The last equality uses the vanishing $(u_2, u_1) = 0$. Now the last term we got is symmetric in u_1 and u_2 and so is equal also to $R_{u_2} R_{u_1}(v)$.

(c) (8 points) Let $V = \mathbb{R}^2$, with the standard inner product (the dot product), and set $u = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$. Find the matrix $[R_u]_\beta$, of the reflection R_u, with respect to the basis $\beta = \{(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}), (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})\}$. Justify your answer!

Answer: Compare with part b.iii of the additional problem to section 18. (Parts b.i and b.ii of that problem were added after the exam for future semesters). Set $u_1 := (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ and $u_2 := (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$. Then

$R_u(u_1) = u_1 - 2(u_1, u)u = u_1 - 2(u_1, u_1)u_1 = -u_1$ and

$R_u(u_2) = u_2 - 2(u_2, u)u = u_2 - 0 = u_2$. We get

$$
[R_u]_\beta = ([R_u(u_1)]_\beta[R_u(u_2)]_\beta) = ([u_1]_\beta[u_2]_\beta) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}.
$$