Math 545 Solution of Midterm 1 Spring 2007

1. (10 points) Let V be an n-dimensional vector space over the field \mathbb{R} and let $T: V \to \mathbb{R}^2$ be a linear transformation from V to \mathbb{R}^2 . Prove that if T is not the zero transformation and T is not onto, then $\dim(null(T)) = n - 1$, where $null(T) := \{v \in V : T(v) = 0\}.$

Answer: (Compare with problem 5 page 108 in the text). The subspace T(V) of \mathbb{R}^2 has dimension $0 < \dim(T(V)) < 2$, since T is not the zero transformation and T is not onto. Hence $\dim(T(V)) = 1$. The Fundamental Theorem of Linear Algebra states, that

$$\dim(null(T)) + \dim(T(V)) = \dim(V).$$

Hence, $\dim(null(T)) = \dim(V) - \dim(T(V)) = n - 1.$

2. (10 points) Determine whether there exists a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^2$, satisfying T(1,1,1) = (1,2), T(1,2,1) = (1,1), and T(2,1,2) = (2,1). Justify your answer!

Answer: (Compare with Problem 11 page 107 in the text). First check if there are any non-trivial linear relations among the three vectors in \mathbb{R}^3 , by forming the 3×3 matrix A, with these vectors as columns, so that the coefficient vector of any linear relation among them is a solution of Ax = 0. Row reducing, we get:

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} \sim \dots \sim \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}.$$

The general solution is $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_3 \begin{pmatrix} -3 \\ 1 \\ 1 \end{pmatrix}$. We get the linear relation:
 $-3(1, 1, 1) + (1, 2, 1) + (2, 1, 2) = (0, 0, 0)$. If *T* exists and we apply *T* to both sides

of the above relation, we get

$$-3(1,2) + (1,1) + (2,1) = (0,0).$$

The left hand side is (0, -4), so such a T does not exist.

3. (20 points) Let V be the vector space of all polynomial functions

$$f(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3$$

of degree ≤ 3 with real coefficients c_i , and $T: V \to V$ the linear transformation

$$T(f) = (x+1)\frac{\partial f}{\partial x} - f$$

sending f to (x + 1) times its derivative minus f itself.

(a) (10 points) Find the matrix $[T]_{\beta}$ in the basis $\beta = \{1, x, x^2, x^3\}$ of V. Answer: (Compare with Problem 3 page 108 in the text).

$$[T]_{\beta} = \left([T(1)]_{\beta} [T(x)]_{\beta} [T(x^{2})]_{\beta} [T(x^{3})]_{\beta} \right)$$
$$= \left([-1]_{\beta} [1]_{\beta} [2x + x^{2}]_{\beta} [3x^{2} + 2x^{3}]_{\beta} \right) = \left(\begin{array}{ccc} -1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 2 \end{array} \right)$$

(b) (3 points) Find a basis for the null space $null(T) := \{f : T(f) = 0\}$. Justify your answer!

Answer: The row reduced echelon form of $[T]_{\beta}$ is $B := \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

The general solution of Bx = 0 is $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = x_2 \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$, which is the subspace

spanned by the coordinate vector $[1+x]_{\beta}$. Hence, null(T) is spanned by 1+x. (c) (2 points) Determine the rank of T.

Answer: The rank of T is equal to the rank of its matrix $[T]_{\beta}$, which is equal to the rank of its reduced echelon form B, which is 3.

- (d) (5 points) Find a basis for the image T(V) of T (consisting of polynomials!!!). **Answer:** The pivot columns of the reduced echelon form B are the first, third, and fourth. Hence, the first, third, and fourth columns of the matrix $[T]_{\beta}$ are a basis for the column space of $[T]_{\beta}$. Thus, T(1), $T(x^2)$, $T(x^3)$ form a basis for T(V). We calculated above that these three vectors are -1, $2x + x^2$, $3x^2 + 2x^3$. There are many other correct answers.
- 4. (20 points) Let V be a finite dimensional vector space over the real numbers, with an inner product. Recall that a linear transformation $T: V \to V$ is called an *orthogonal transformation*, if it preserves length, i.e., ||T(v)|| = ||v||, for all $v \in V$.
 - (a) (10 points) Prove that the product TS, of two orthogonal transformations T and S, is an orthogonal transformation.

Answer: Compare with problem 7 page 129. TS(v) = T(S(v)), so ||TS(v)|| = ||T(S(v))|| = ||S(v)|| = ||v||, where the second equality is due to the assumption, that T is orthogonal, and the last equality is due to S being orthogonal.

(b) (10 points) Let T be an orthogonal transformation of V. Show that det(T) is equal to 1 or -1.

Answer: Compare with problem 5 page 150. Let $\beta = \{u_1, \ldots, u_n\}$ be an orthonormal basis for V. The matrix $A := [T]_{\beta}$ satisfies $({}^tA)A = I$ (the transpose of A is equal to the inverse of A), by Theorem 15.11 page 127. Recall that $\det(A) = \det({}^tA)$. Hence,

$$1 = \det(I) = \det(({}^{t}A)A) = \det({}^{t}A)\det(A) = (\det(A))^{2}$$

Thus, $det(T) = det(A) = \pm 1$.

- 5. (20 points) Let $v_1 = (1, 1, 0)$, $v_2 = (1, 0, 1)$, and $v_3 = (1, 1, 1)$.
 - (a) (8 points) Use the Gram-Schmidt process, and the above basis $\{v_1, v_2, v_3\}$ of \mathbb{R}^3 , to find an orthonormal basis $\{u_1, u_2, u_3\}$ of \mathbb{R}^3 , such that span $\{v_1, \ldots, v_r\} =$ span $\{u_1, \ldots, u_r\}$, for $1 \le r \le 3$.

Answer: (Compare with problem 1 page 129) $u_1 = \frac{v_1}{\|v_1\|} = \frac{1}{\sqrt{2}}(1,1,0)$. $v_2 - (v_2, u_1)u_1 = (1,0,1) - \frac{1}{2}(1,1,0) = \frac{1}{2}(1,-1,2)$. Normalize to get

$$u_{2} = \frac{(1,-1,2)}{\|(1,-1,2)\|} = \frac{1}{\sqrt{6}}(1,-1,2).$$

$$v_{3} - (v_{3},u_{1})u_{1} - (v_{3},u_{2})u_{2} = (1,1,1) - (1,1,0) - \frac{1}{3}(1,-1,2) = \frac{1}{3}(-1,1,1).$$

$$u_{3} = \frac{(-1,1,1)}{\|(-1,1,1)\|} = \frac{1}{\sqrt{3}}(-1,1,1).$$

(b) (4 points) State the definition of an orthonormal basis, and check that the basis you found in part 5a is orthonormal.

Answer: An orthonormal basis for an *n*-dimensional vector space is a set of *n* vector $\{u_1, \ldots, u_n\}$, satisfying $(u_i, u_i) = 1$, for all *i*, and $(u_i, u_j) = 0$, if $i \neq j$. Two points were given for the check of your answer in part 5a.

(c) (4 points) Find the distance from the vector v_3 to the plane spanned by $\{v_1, v_2\}$. (these vectors are given at the beginning of problem 5).

Answer: Compare with problem 13 page 131. The plane P spanned by $\{v_1, v_2\}$ is also spanned by $\{u_1, u_2\}$. We need an orthonormal basis for P in order to compute the projection $\hat{v}_3 := (v_3, u_1)u_1 + (v_3, u_2)u_2$ of v_3 to P!!! We get

$$\hat{v}_3 := (v_3, u_1)u_1 + (v_3, u_2)u_2 = (1, 1, 0) + \frac{1}{3}(1, -1, 2) = \frac{2}{3}(2, 1, 1)$$

But, in fact, we need the difference $v_3 - \hat{v}_3$, which was already calculated in part 5a. The distance is $||v_3 - \hat{v}_3|| = ||\frac{1}{3}(-1, 1, 1)|| = \frac{1}{3}||(-1, 1, 1)|| = \frac{1}{\sqrt{3}}$.

(d) (4 points) Explain how to read, from the orthonormal basis you found in part 5a, without any further computations, the equation of the plane spanned by $\{v_1, v_2\}$.

Answer: Compare with part (a) of problem 11 page 130. The vector u_3 is orthogonal to the plane P spanned by $\{u_1, u_2\}$, which is equal to the plane spanned by $\{v_1, v_2\}$. Hence the plane P is equal to $\{v : (v, u_3) = 0\}$. Using dot product, it becomes

$$P = \{ (x_1, x_2, x_3) : \frac{1}{\sqrt{3}} (-x_1 + x_2 + x_3) = 0 \},\$$

or simply $-x_1 + x_2 + x_3 = 0$.

6. (20 points) Let V be an n-dimensional vector space with an inner product and u a unit vector in V (so that (u, u) = 1). Let u^{\perp} be the subspace $\{v \in V : (v, u) = 0\}$, orthogonal to u. Recall that the reflection $R_u : V \to V$, of V with respect to u^{\perp} , is given by

$$R_u(v) = v - 2(v, u)u.$$

(a) (8 points) Prove that R_u is a *linear* transformation (it is also easy to show that R_u is an orthogonal transformation, but you are not asked to show it). **Answer:** Check the two properties in the definition of a linear transformation: 1) For every two vectors $v_1, v_2 \in V$ we have

$$R_u(v_1 + v_2) = v_1 + v_2 - 2(v_1 + v_2, u)u = v_1 + v_2 - 2(v_1, u)u - 2(v_2, u)u$$

= $[v_1 - 2(v_1, u)u] + [v_2 - 2(v_2, u)u] = R_u(v_1) + R_u(v_2).$

2) For every $\lambda \in \mathbb{R}$ and every $v \in V$, we have

$$R_u(\lambda v) = \lambda v - 2(\lambda v, u)u = \lambda v - 2\lambda(v, u)u = \lambda[v - 2(v, u)u] = \lambda R_u(v).$$

(b) (4 points) Let u_1 and u_2 be two unit vectors in V. Show that if $(u_1, u_2) = 0$, then $R_{u_1}R_{u_2} = R_{u_2}R_{u_1}$. In other words, the two reflections commute, if the two unit vectors are orthogonal.

Answer: We need to prove the equality $R_{u_1}R_{u_2}(v) = R_{u_2}R_{u_1}(v)$ for every vector v in V.

$$R_{u_1}R_{u_2}(v) = R_{u_1}(R_{u_2}(v)) = R_{u_1}(v - 2(v, u_2)u_2) = = [v - 2(v, u_2)u_2] - 2([v - 2(v, u_2)u_2], u_1)u_1 = v - 2(v, u_2)u_2 - 2(v, u_1)u_1 + 4(v, u_2)(u_2, u_1)u_1 = v - 2(v, u_2)u_2 - 2(v, u_1)u_1.$$

The last equality uses the vanishing $(u_2, u_1) = 0$. Now the last term we got is symmetric in u_1 and u_2 and so is equal also to $R_{u_2}R_{u_1}(v)$.

(c) (8 points) Let $V = \mathbb{R}^2$, with the standard inner product (the dot product), and set $u = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$. Find the matrix $[R_u]_\beta$, of the reflection R_u , with respect to the basis $\beta = \{(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}), (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})\}$. Justify your answer!

Answer: Compare with part b.iii of the additional problem to section 18. (Parts b.i and b.ii of that problem were added after the exam for future semesters). Set $u_1 := (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ and $u_2 := (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$. Then $R_u(u_1) = u_1 - 2(u_1, u)u = u_1 - 2(u_1, u_1)u_1 = -u_1$ and $R_u(u_2) = u_2 - 2(u_2, u)u = u_2 - 0 = u_2$. We get

$$[R_u]_{\beta} = ([R_u(u_1)]_{\beta}[R_u(u_2)]_{\beta}) = ([-u_1]_{\beta}[u_2]_{\beta}) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}.$$