
Math 545 Solution of Midterm 1 Spring 2007

1. (10 points) Let V be an n-dimensional vector space over the field R and let
T : V → R

2 be a linear transformation from V to R
2. Prove that if T is not

the zero transformation and T is not onto, then dim(null(T )) = n − 1, where
null(T ) := {v ∈ V : T (v) = 0}.
Answer: (Compare with problem 5 page 108 in the text). The subspace T (V )
of R

2 has dimension 0 < dim(T (V )) < 2, since T is not the zero transformation
and T is not onto. Hence dim(T (V )) = 1. The Fundamental Theorem of Linear
Algebra states, that

dim(null(T )) + dim(T (V )) = dim(V ).

Hence, dim(null(T )) = dim(V )− dim(T (V )) = n− 1.

2. (10 points) Determine whether there exists a linear transformation T : R
3 → R

2,
satisfying T (1, 1, 1) = (1, 2), T (1, 2, 1) = (1, 1), and T (2, 1, 2) = (2, 1). Justify
your answer!

Answer: (Compare with Problem 11 page 107 in the text). First check if there
are any non-trivial linear relations among the three vectors in R

3, by forming the
3× 3 matrix A, with these vectors as columns, so that the coefficient vector of any
linear relation among them is a solution of Ax = 0. Row reducing, we get:

A =





1 1 2
1 2 1
1 1 2



 ∼ · · · ∼





1 0 3
0 1 −1
0 0 0



 .

The general solution is





x1

x2

x3



 = x3





−3
1
1



 . We get the linear relation:

−3(1, 1, 1)+ (1, 2, 1)+ (2, 1, 2) = (0, 0, 0). If T exists and we apply T to both sides
of the above relation, we get

−3(1, 2) + (1, 1) + (2, 1) = (0, 0).

The left hand side is (0,−4), so such a T does not exist.

3. (20 points) Let V be the vector space of all polynomial functions

f(x) = c0 + c1x + c2x
2 + c3x

3

of degree ≤ 3 with real coefficients ci, and T : V → V the linear transformation

T (f) = (x + 1)
∂f

∂x
− f

sending f to (x + 1) times its derivative minus f itself.

(a) (10 points) Find the matrix [T ]β in the basis β = {1, x, x2, x3} of V .

Answer: (Compare with Problem 3 page 108 in the text).

[T ]β =
(

[T (1)]β[T (x)]β[T (x2)]β[T (x3)]β
)

=
(

[−1]β [1]β
[

2x + x2
]

β

[

3x2 + 2x3
]

β

)

=









−1 1 0 0
0 0 2 0
0 0 1 3
0 0 0 2









1



(b) (3 points) Find a basis for the null space null(T ) := {f : T (f) = 0}. Justify
your answer!

Answer: The row reduced echelon form of [T ]β is B :=









1 −1 0 0
0 0 1 0
0 0 0 1
0 0 0 0









.

The general solution of Bx = 0 is









x1

x2

x3

x4









= x2









1
1
0
0









, which is the subspace

spanned by the coordinate vector [1+x]β. Hence, null(T ) is spanned by 1+x.

(c) (2 points) Determine the rank of T .

Answer: The rank of T is equal to the rank of its matrix [T ]β, which is equal
to the rank of its reduced echelon form B, which is 3.

(d) (5 points) Find a basis for the image T (V ) of T (consisting of polynomials!!!).

Answer: The pivot columns of the reduced echelon form B are the first,
third, and fourth. Hence, the first, third, and fourth columns of the matrix
[T ]β are a basis for the column space of [T ]β. Thus, T (1), T (x2), T (x3) form a
basis for T (V ). We calculated above that these three vectors are −1, 2x+x2,
3x2 + 2x3. There are many other correct answers.

4. (20 points) Let V be a finite dimensional vector space over the real numbers, with
an inner product. Recall that a linear transformation T : V → V is called an
orthogonal transformation, if it preserves length, i.e., ‖T (v)‖ = ‖v‖, for all v ∈ V .

(a) (10 points) Prove that the product TS, of two orthogonal transformations T

and S, is an orthogonal transformation.

Answer: Compare with problem 7 page 129. TS(v) = T (S(v)), so
‖TS(v)‖ = ‖T (S(v))‖ = ‖S(v)‖ = ‖v‖, where the second equality is due to
the assumption, that T is orthogonal, and the last equality is due to S being
orthogonal.

(b) (10 points) Let T be an orthogonal transformation of V . Show that det(T )
is equal to 1 or −1.

Answer: Compare with problem 5 page 150. Let β = {u1, . . . , un} be an
orthonormal basis for V . The matrix A := [T ]β satisfies (tA)A = I (the
transpose of A is equal to the inverse of A), by Theorem 15.11 page 127.
Recall that det(A) = det(tA). Hence,

1 = det(I) = det((tA)A) = det(tA) det(A) = (det(A))2.

Thus, det(T ) = det(A) = ±1.

5. (20 points) Let v1 = (1, 1, 0), v2 = (1, 0, 1), and v3 = (1, 1, 1).

(a) (8 points) Use the Gram-Schmidt process, and the above basis {v1, v2, v3} of
R

3, to find an orthonormal basis {u1, u2, u3} of R
3, such that span{v1, . . . , vr} =

span{u1, . . . , ur}, for 1 ≤ r ≤ 3.

Answer: (Compare with problem 1 page 129) u1 = v1

‖v1‖ = 1√
2
(1, 1, 0).

v2 − (v2, u1)u1 = (1, 0, 1)− 1
2
(1, 1, 0) = 1

2
(1,−1, 2). Normalize to get
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u2 = (1,−1,2)
‖(1,−1,2)‖ = 1√

6
(1,−1, 2).

v3 − (v3, u1)u1 − (v3, u2)u2 = (1, 1, 1)− (1, 1, 0)− 1
3
(1,−1, 2) = 1

3
(−1, 1, 1).

u3 = (−1,1,1)
‖(−1,1,1)‖ = 1√

3
(−1, 1, 1).

(b) (4 points) State the definition of an orthonormal basis, and check that the
basis you found in part 5a is orthonormal.

Answer: An orthonormal basis for an n-dimensional vector space is a set
of n vector {u1, . . . , un}, satisfying (ui, ui) = 1, for all i, and (ui, uj) = 0, if
i 6= j. Two points were given for the check of your answer in part 5a.

(c) (4 points) Find the distance from the vector v3 to the plane spanned by
{v1, v2}. (these vectors are given at the beginning of problem 5).

Answer: Compare with problem 13 page 131. The plane P spanned by
{v1, v2} is also spanned by {u1, u2}. We need an orthonormal basis for P in

order to compute the projection v̂3 := (v3, u1)u1 + (v3, u2)u2 of v3 to P !!! We
get

v̂3 := (v3, u1)u1 + (v3, u2)u2 = (1, 1, 0) +
1

3
(1,−1, 2) =

2

3
(2, 1, 1).

But, in fact, we need the difference v3 − v̂3, which was already calculated in
part 5a. The distance is ‖v3 − v̂3‖ = ‖1

3
(−1, 1, 1)‖ = 1

3
‖(−1, 1, 1)‖ = 1√

3
.

(d) (4 points) Explain how to read, from the orthonormal basis you found in part
5a, without any further computations, the equation of the plane spanned by
{v1, v2}.
Answer: Compare with part (a) of problem 11 page 130. The vector u3 is
orthogonal to the plane P spanned by {u1, u2}, which is equal to the plane
spanned by {v1, v2}. Hence the plane P is equal to {v : (v, u3) = 0}. Using
dot product, it becomes

P = {(x1, x2, x3) :
1√
3
(−x1 + x2 + x3) = 0},

or simply −x1 + x2 + x3 = 0.

6. (20 points) Let V be an n-dimensional vector space with an inner product and u a
unit vector in V (so that (u, u) = 1). Let u⊥ be the subspace {v ∈ V : (v, u) = 0},
orthogonal to u. Recall that the reflection Ru : V → V , of V with respect to u⊥,
is given by

Ru(v) = v − 2(v, u)u.

(a) (8 points) Prove that Ru is a linear transformation (it is also easy to show
that Ru is an orthogonal transformation, but you are not asked to show it).

Answer: Check the two properties in the definition of a linear transforma-
tion: 1) For every two vectors v1, v2 ∈ V we have

Ru(v1 + v2) = v1 + v2 − 2(v1 + v2, u)u = v1 + v2 − 2(v1, u)u− 2(v2, u)u

= [v1 − 2(v1, u)u] + [v2 − 2(v2, u)u] = Ru(v1) + Ru(v2).

2) For every λ ∈ R and every v ∈ V , we have

Ru(λv) = λv − 2(λv, u)u = λv − 2λ(v, u)u = λ[v − 2(v, u)u] = λRu(v).
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(b) (4 points) Let u1 and u2 be two unit vectors in V . Show that if (u1, u2) = 0,
then Ru1

Ru2
= Ru2

Ru1
. In other words, the two reflections commute, if the

two unit vectors are orthogonal.

Answer: We need to prove the equality Ru1
Ru2

(v) = Ru2
Ru1

(v) for every
vector v in V .

Ru1
Ru2

(v) = Ru1
(Ru2

(v)) = Ru1
(v − 2(v, u2)u2) =

= [v − 2(v, u2)u2]− 2 ([v − 2(v, u2)u2], u1) u1

= v − 2(v, u2)u2 − 2(v, u1)u1 + 4(v, u2)(u2, u1)u1

= v − 2(v, u2)u2 − 2(v, u1)u1.

The last equality uses the vanishing (u2, u1) = 0. Now the last term we got
is symmetric in u1 and u2 and so is equal also to Ru2

Ru1
(v).

(c) (8 points) Let V = R
2, with the standard inner product (the dot product),

and set u = ( 1√
2
, 1√

2
). Find the matrix [Ru]β, of the reflection Ru, with respect

to the basis β = {( 1√
2
, 1√

2
), ( 1√

2
,− 1√

2
)}. Justify your answer!

Answer: Compare with part b.iii of the additional problem to section 18. (Parts
b.i and b.ii of that problem were added after the exam for future semesters). Set
u1 := ( 1√

2
, 1√

2
) and u2 := ( 1√

2
,− 1√

2
). Then

Ru(u1) = u1 − 2(u1, u)u = u1 − 2(u1, u1)u1 = −u1 and
Ru(u2) = u2 − 2(u2, u)u = u2 − 0 = u2. We get

[Ru]β = ([Ru(u1)]β[Ru(u2)]β) = ([−u1]β[u2]β) =

(

−1 0
0 1

)

.
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