Additional problems for section 25

1. Let T be a linear transformation on a vector space V over the complex number field \mathbb{C} with a basis $\{u, v, w\}$, such that

$$T(u) = u - v$$
$$T(v) = u + 3v$$
$$T(w) = -u - 4v - w.$$

(a) Find the elementary divisors of T.
(b) Find the Jordan canonical form of T.
(c) Find a basis v_1, v_2, v_3 of V, such that the matrix of T in this basis is the Jordan canonical form of T.

2. Continuation of Problem 8 from section 25 page 226

(a) Let A be a matrix, whose elementary divisors are

$$\{p_1(x)^{e_{1,1}}, \ldots, p_1(x)^{e_{1,k_1}}, p_2(x)^{e_{2,1}}, \ldots, p_2(x)^{e_{2,k_2}}, \ldots, p_r(x)^{e_{r,1}}, \ldots, p_r(x)^{e_{r,k_r}}\},$$

where $p_i(x)$, $1 \leq i \leq r$ are distinct prime polynomials, and $e_{i,j}$ are positive integers. Prove that the minimal polynomial of A is

$$m(x) = p_1(x)^{e_1} \cdot p_2(x)^{e_2} \cdots p_r(x)^{e_r}, \tag{1}$$

where $e_i = \max\{e_{i,1}, \ldots, e_{i,k_i}\}$. Hint: Let $f(x)$ be the polynomial on the right hand side of (1). Prove that $f(A) = 0$. Prove also that $p_i(x)^{e_i}$ divides the minimal polynomial $m(x)$.

(b) Conclude, that if the minimal polynomial $m(x)$ of A is equal to the characteristic polynomial $h(x)$, then the elementary divisors of A are determined by $h(x)$. (See the Unique Factorization Theorem 20.18 page 171 in the text).

(c) Let A and B be two 2×2 matrices with entries in a field F. Show that A and B are similar, if and only if they have the same minimal polynomial.

(d) Let A and B be two 3×3 matrices with entries in a field F. Show that A and B are similar, if and only if they have the same characteristic polynomial $h(x)$ and the same minimal polynomial $m(x)$.

(e) Give an example of two 4×4 matrices A and B, which are not similar, but which have the same characteristic polynomial $h(x)$ and the same minimal polynomial $m(x)$.

1