Let T be the linear transformation from \mathbb{R}^{3} to \mathbb{R}^{3} given by multiplication by a 3×3 matrix A. We endow \mathbb{R}^{3} with the dot product.

1. Show that T is a rotation of \mathbb{R}^{3} about some line through the origin (the axis of rotation), if and only if A satisfies the following two conditions:
(i) $A^{T} A=I$ (in other words, the transpose of A is equal to the inverse of A) and (ii) $\operatorname{det}(A)=1$.
2. (a) Show that the following two are matrices of rotations (check conditions (i) and (ii) above):

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right], \quad B=\left[\begin{array}{ccc}
0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
-1 & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

(b) Consider a rotation given by some matrix A. Explain why any vector in the axis line of the rotation must be an eigenvector of A with eigenvalue 1 .
(c) Find a non-zero vector spanning the axis line of each of the two rotations given by the matrices A and B above. Note: For the axis line of B, you will probably need to use the identity $(\sqrt{2}+1)(\sqrt{2}-1)=1$.
(d) Find an orthonormal basis $\left\{u_{1}, u_{2}, u_{3}\right\}$ of \mathbb{R}^{3}, such that $P^{-1} B P$ is in the normal form of Theorem 30.5 page 270, where $P=\left(u_{1} u_{2} u_{3}\right)$ is the (orthogonal) change of basis matrix.

