Solve 6 out of the following 7 problems.
Show all your work and justify all your answers!!!

1. (17 points) Let θ be an angle, such that $\sin (\theta) \neq 0$, and let $A:=\left(\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right)$ be the matrix of the rotation of \mathbb{R}^{2} about the origin by angle θ counterclockwise.
(a) Find the characteristic polynomial of A.
(b) Find the minimal polynomial of A.
(c) Show that A is similar to a diagonal matrix in $M_{2}(\mathbb{C})$.
(d) Show that A is not similar to a diagonal matrix in $M_{2}(\mathbb{R})$.
2. (17 points) Set $A:=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$.
(a) Find the characteristic polynomial of A.
(b) Find a basis of \mathbb{C}^{2} consisting of eigenvectors of A.
(c) Find an invertible matrix P and a diagonal matrix D, both in $M_{2}(\mathbb{C})$, such that $P^{-1} A P=D$.
3. (17 points) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by multiplication by $A=\left(\begin{array}{cc}-2 & 9 \\ -1 & 4\end{array}\right)$.
(a) Find the characteristic polynomial of T.
(b) Find the minimal polynomial of T.
(c) Determine if T is diagonalizable.
(d) Find the eigenvalues of T.
(e) Find a basis for each eigenspace of T.
(f) Find an upper triangular matrix B and an invertible matrix P, such that $B=P^{-1} A P$. Carefully explain, in complete sentences, your method for finding P. Credit will not be given for an answer obtained by trial and error.
4. (17 points)
(a) Let V be a finite dimensional vector space, T, D, and N, three linear transformations in $L(V, V)$, such that $T=D+N$. State the three properties that D and N need to satisfy, in order for the above to be the Jordan decomposition of T.
(b) Let $A=\left(\begin{array}{cc}0 & 4 \\ -1 & 4\end{array}\right), B=\left(\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right)$, and $P=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$. Note, that $P^{-1} A P=B$.
i. Find the Jordan decomposition of B.
ii. Find the Jordan decomposition $A=D+N$ of A.
iii. Check directly that the matrices D and N you found in part 4(b)ii satisfy the properties in part 4a.
iv. Use the Jordan decomposition of A to calculate the entries of A^{k}, as functions of k, for all positive integers k.
5. (17 points) Let V be an n-dimensional vector space over \mathbb{R} with an inner product and u a unit vector in V. Recall, that the reflection R of V, with respect to the subspace u^{\perp} orthogonal to u, is given by

$$
R(v)=v-2(v, u) u
$$

(a) Show that $R^{2}=1$.
(b) Find the minimal polynomial of R. Justify your answer.
(c) Show that R is diagonalizable.
(d) Show that the -1 eigenspace of R is spanned by u.
(e) Find the characteristic polynomial of R. Justify all your answers!
(f) Calculate the trace $\operatorname{tr}(R)$.
6. (17 points) Let V be a finite dimensional vector space over a field F, and $T: V \rightarrow V$ a linear transformation.
(a) Let $v \in V$ be an eigenvector of T with eigenvalue λ, and $g(x)=c_{n} x^{n}+\cdots+c_{0}$ a polynomial in $F[x]$. Show that v is an eigenvector of $g(T)$ and find its eigenvalue.
(b) Use part 6a to show, that every root of the characteristic polynomial $h(x)$ of T is also a root of the minimal polynomial $m(x)$ of T (without using the Cayley-Hamilton Theorem).
7. (17 points) Let V be a four dimensional vector space over \mathbb{C}. Assume that the characteristic polynomial of T is $\left(x-\lambda_{1}\right)^{2}\left(x-\lambda_{2}\right)^{2}$, and $\lambda_{1} \neq \lambda_{2}$.
(a) What are all the possible minimal polynomials $m(x)$ of T (with leading coefficient 1)? Justify your answer!
(b) Assume that the minimal polynomial of T is $m(x)=\left(x-\lambda_{1}\right)^{e_{1}}\left(x-\lambda_{2}\right)^{e_{2}}$, set $V_{i}:=\operatorname{null}\left[\left(T-\lambda_{i} \mathbf{1}\right)^{e_{i}}\right]$, where $\mathbf{1}$ is the identity transformation, and let $T_{i} \in L\left(V_{i}, V_{i}\right)$ be the restriction of T to V_{i}. Use the Primary Decomposition Theorem to show, that the minimal polynomial of T_{i} is $\left(x-\lambda_{i}\right)^{e_{i}}$. Hint: Show first that the minimal polynomial $m_{i}(x)$ of T_{i} divides $m(x)$ and the product $g(x):=m_{1}(x) m_{2}(x)$ satisfies $g(T)=0$.
(c) Assume that the minimal polynomial of T is $\left(x-\lambda_{1}\right)^{2}\left(x-\lambda_{2}\right)$. Calculate the dimensions of the null spaces of $T-\lambda_{1} \mathbf{1},\left(T-\lambda_{1} \mathbf{1}\right)^{2}, T-\lambda_{2} \mathbf{1}$, and $\left(T-\lambda_{2} \mathbf{1}\right)^{2}$. Carefully explain how your answer follows from the Primary Decomposition Theorem and the Triangular Form Theorem.

