MATH 471 - PRACTICE EXAM 2

Problem 1.

(a) Compute $\frac{1}{11}$ in $\mathbf{Z}/17$. (b) Compute $\frac{7}{11}$ in $\mathbf{Z}/17$.

Problem 2. Compute $31^{1209} \mod 101$. (Hint: first use Fermat's little theorem to reduce the exponent.)

Problem 3. Consider the RSA code with n = 187 and e = 23. (So a message x is encrypted by computing $x^{23} \mod 187$.) Decode the encrypted message 144.

Problem 4. How many zeros does 62! end in?

Problem 5. (5 points each) Find all solutions of the congruences below.

- (1) $8x \equiv 7 \pmod{11}$
- (2) $36x \equiv 18 \pmod{60}$
- (3) $5x \equiv 15 \pmod{25}$

Problem 6. For each of the following expressions, give all elements matching the given description or explain why none exist.

- (a) $\frac{1}{5} \in \mathbf{Z}/13$ (b) $\frac{3}{7} \in \mathbf{Z}/14$
- (c) $\sqrt{5} \in \mathbf{Z}/11$
- (d) $\sqrt{-1} \in \mathbf{Z}/11$
- (e) $\sqrt[3]{2} \in \mathbf{Z}/5$

Problem 7. Find all solutions of each linear congruence below.

- (a) $3x \equiv 7 \pmod{13}$
- (b) $4x \equiv 10 \pmod{14}$
- (c) $5x \equiv 13 \pmod{15}$

Problem 8. Consider the RSA code with n = 187 and d = 107. (That is, a message X is encoded to X^{107} modulo 187.) Break this code and decode the recieved message Y = 10 using the following data in $\mathbb{Z}/187$:

 $10^2 = 100, 10^4 = 89, 10^8 = 67, 10^{16} = 1, 100^{32} = 1, 100^{64} = 1, 10^{128} = 1.$