MATH 471 - PRACTICE EXAM 2

Problem 1.

(a) Compute $\frac{1}{11}$ in $\mathbf{Z} / 17$.
(b) Compute $\frac{7}{11}$ in $\mathbf{Z} / 17$.

Problem 2. Compute $31^{1209} \bmod 101$. (Hint: first use Fermat's little theorem to reduce the exponent.)
Problem 3. Consider the RSA code with $n=187$ and $e=23$. (So a message x is encrypted by computing $x^{23} \bmod 187$.) Decode the encrypted message 144.
Problem 4. How many zeros does 62 ! end in?
Problem 5. (5 points each) Find all solutions of the congruences below.
(1) $8 x \equiv 7(\bmod 11)$
(2) $36 x \equiv 18(\bmod 60)$
(3) $5 x \equiv 15(\bmod 25)$

Problem 6. For each of the following expressions, give all elements matching the given description or explain why none exist.
(a) $\frac{1}{5} \in \mathbf{Z} / 13$
(b) $\frac{3}{7} \in \mathbf{Z} / 14$
(c) $\sqrt{5} \in \mathbf{Z} / 11$
(d) $\sqrt{-1} \in \mathbf{Z} / 11$
(e) $\sqrt[3]{2} \in \mathbf{Z} / 5$

Problem 7. Find all solutions of each linear congruence below.
(a) $3 x \equiv 7(\bmod 13)$
(b) $4 x \equiv 10(\bmod 14)$
(c) $5 x \equiv 13(\bmod 15)$

Problem 8. Consider the RSA code with $n=187$ and $d=107$. (That is, a message X is encoded to X^{107} modulo 187.) Break this code and decode the recieved message $Y=10$ using the following data in $\mathbf{Z} / 187$:

$$
10^{2}=100,10^{4}=89,10^{8}=67,10^{16}=1,100^{32}=1,100^{64}=1,10^{128}=1
$$

