Math 471 - Practice Final Exam

Problem 1. Recall that for integers a, b we say that a < b if $b + -a \in \mathbb{Z}^+$. Give a careful proof (from the axioms) of the following statement:

If $a, b \in \mathbb{Z}$, $c \in \mathbb{Z}^+$, and a < b, then ac < bc.

Problem 2. Find all positive integers n such that 12|n and n|816.

Problem 3. Find all solutions to

$$11x + 17y = 305$$

with $x, y \in \mathbf{Z}^+$.

Problem 4. Compute $31^{1209} \mod 101$. (Hint: first use Fermat's little theorem to reduce the exponent.)

Problem 5. Find an $x \in \mathbb{Z}$ such that

 $x \equiv 2 \pmod{10};$ $x \equiv 7 \pmod{11}.$

Problem 6. How many roots does the polynomial $f(x) = x^8 - 1$ have in $\mathbb{Z}/91$?

Problem 7. Below is a table of logarithms for $(\mathbf{Z}/17)^{\times}$ with respect to the primitive root g = 3:

Use the table to find all $x \in \mathbb{Z}/17$ such that

$$x^{12} \equiv 13 \pmod{17}.$$

Problem 8. Is 198 a square modulo the prime 223?

Problem 9. Consider the RSA code with n = 187 and e = 23. (So a message x is encrypted by computing $x^{23} \mod 187$.) Decode the encrypted message 144.

Problem 10. How many zeros does 62! end in?

Problem 11. Find the general solution to the linear diophantine equation

17x + 31y = 3.

Problem 12. Fix an integer n and an element $a \in \mathbb{Z}/n$. Let e denote the order of a. Prove that the order of a^2 is either e or e/2 depending on whether e is odd or even.

Problem 13.

((a)) Use the Chinese remainder theorem to find an integer x such that

 $x \equiv 4 \pmod{7}$ $x \equiv 10 \pmod{13}.$ ((b)) Does there exist an integer x such that $x \equiv 11 \pmod{12}$ $x \equiv 5 \pmod{14}$

 $x \equiv 19 \pmod{21}$?

Why or why not? (You need not exhibit such an x if it exists.)

Problem 14. Find the largest two digit prime number p such that -5 is a square mod p. (Hint: the simplest way is to figure out for which p you have $\left(\frac{-5}{p}\right) = 1$.)