## Math 471 - Practice Final Exam

Problem 1. Recall that for integers $a, b$ we say that $a<b$ if $b+-a \in \mathbf{Z}^{+}$. Give a careful proof (from the axioms) of the following statement:

$$
\text { If } a, b \in \mathbf{Z}, c \in \mathbf{Z}^{+}, \text {and } a<b \text {, then } a c<b c .
$$

Problem 2. Find all positive integers $n$ such that $12 \mid n$ and $n \mid 816$.

Problem 3. Find all solutions to

$$
11 x+17 y=305
$$

with $x, y \in \mathbf{Z}^{+}$.

Problem 4. Compute $31^{1209} \bmod 101$. (Hint: first use Fermat's little theorem to reduce the exponent.)

Problem 5. Find an $x \in \mathbf{Z}$ such that

$$
\begin{aligned}
& x \equiv 2 \quad(\bmod 10) ; \\
& x \equiv 7 \quad(\bmod 11) .
\end{aligned}
$$

Problem 6. How many roots does the polynomial $f(x)=x^{8}-1$ have in $\mathbf{Z} / 91$ ?

Problem 7. Below is a table of logarithms for $(\mathbf{Z} / 17)^{\times}$with respect to the primitive root $g=3$ :

$$
\begin{array}{c|cccccccccccccccc}
a & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\hline \log _{3} a & 0 & 14 & 1 & 12 & 5 & 15 & 11 & 10 & 2 & 3 & 7 & 13 & 4 & 9 & 6 & 8
\end{array}
$$

Use the table to find all $x \in \mathbf{Z} / 17$ such that

$$
x^{12} \equiv 13 \quad(\bmod 17)
$$

Problem 8. Is 198 a square modulo the prime 223 ?

Problem 9. Consider the RSA code with $n=187$ and $e=23$. (So a message $x$ is encrypted by computing $x^{23} \bmod 187$.) Decode the encrypted message 144.

Problem 10. How many zeros does 62 ! end in?

Problem 11. Find the general solution to the linear diophantine equation

$$
17 x+31 y=3
$$

Problem 12. Fix an integer $n$ and an element $a \in \mathbf{Z} / n$. Let $e$ denote the order of $a$. Prove that the order of $a^{2}$ is either $e$ or $e / 2$ depending on whether $e$ is odd or even.

## Problem 13.

((a)) Use the Chinese remainder theorem to find an integer $x$ such that

$$
\begin{array}{cl}
x \equiv 4 & (\bmod 7) \\
x \equiv 10 & (\bmod 13) .
\end{array}
$$

((b)) Does there exist an integer $x$ such that

$$
\begin{aligned}
x \equiv 11 & (\bmod 12) \\
x \equiv 5 & (\bmod 14) \\
x \equiv 19 & (\bmod 21) ?
\end{aligned}
$$

Why or why not? (You need not exhibit such an $x$ if it exists.)

Problem 14. Find the largest two digit prime number $p$ such that -5 is a square $\bmod p$. (Hint: the simplest way is to figure out for which $p$ you have $\left(\frac{-5}{p}\right)=1$.)

