Homework 10/ Practice Midterm 2

Liubomir Chiriac

1. (a) Show that $25 \mid 2^{65}+3^{65}$. (Hint: Use Euler's Theorem.)
(b) Let $p>3$ be prime. Find the remainder when $3^{p}(p-2)$! is divided by p. (Hint: Combine Wilson's Theorem and Fermat's Little Theorem.)
2. Suppose that both p and $2 p-1$ are odd primes. Let $n=2(2 p-1)$. Prove that

$$
\varphi(n)=\varphi(n+2)
$$

(Hint: Use the multiplicative property of φ, i.e., Lemma 9.2.8 in your textbook.)
3. Suppose the RSA algorithm is used with the modulus $n=91$.
(a) List four possible values for the encryption exponent e.
(b) Let $e=17$. First, encrypt the message 10 and then encrypt again the answer you obtained.
(c) Based on your computations above, explain why the choice made for e in part (b) may not be considered too secure.
4. (a) Show that the order of any nonzero element in \mathbb{Z}_{23} is either $1,2,11$ or 22.
(b) Show that 5 is a primitive root modulo 23. (Hint: Use part (a).)
(c) Part (b) implies that every nonzero element of \mathbb{Z}_{23} appears exactly once in the list

$$
\overline{5}, \overline{5}^{2}, \ldots, \overline{5}^{22}
$$

Find all the elements in this list which are primitive roots in \mathbb{Z}_{23}.
(d) Find the order of 5^{14} modulo 23.

