Practice problems for the Final Exam

Liubomir Chiriac

- 1. (a) Let $p \equiv 1 \pmod{4}$ be a prime. Prove that there exists some $x \in \mathbb{Z}$ such that $p \mid x^2 + 1$.
 - (b) Use the quadratic character of -1 to prove that there are infinitely many primes of the form 4k + 1. (Hint: Assume that there are only finitely many such primes: p_1, \ldots, p_r . Let q be a prime factor of $N = 1 + 4(p_1 \ldots p_r)^2$. What is $q \pmod{4}$?)
- 2. Let a be a primitive root modulo an odd prime p.
 - (a) Can a be a quadratic residue modulo p? (Hint: Look at $\operatorname{ord}_p(a)$.)
 - (b) We have proved in class that the numbers $a^1, a^2, \ldots, a^{p-1}$ are congruent modulo p, in some order, to $1, 2, \ldots, p-1$. Use this observation to show that

$$(p-1)! \equiv \left(\frac{a}{p}\right)^p \pmod{p}$$

- (c) Combining (a) and (b) give another proof of Wilson's Theorem.
- 3. Let p be an odd prime. Use the Law of Quadratic Reciprocity to prove that

$$\left(\frac{3}{p}\right) = 1$$
 if and only if $p \equiv 1 \pmod{12}$ or $p \equiv -1 \pmod{12}$.

(Hint: Consider two separate cases depending on $p \pmod{4}$.)

- 4. (a) Let a, b ∈ Z such that a ≠ 0. Prove that n = a² + b² is not a Gaussian prime.
 (b) If x, y ∈ Z[i] such that N(x) | N(y), is it necessarily true that x | y?
- 5. Which elements of the set $\{i + 1, 3 2i, 101i, 11 + 2i, -103i, 7 + 5i\}$ are Gaussian primes?
- 6. Let $p \ge 7$ be a prime. Prove that there exist two consecutive integers that are both quadratic residues modulo p. (Hint: $2 \cdot 5 = 10$.)

Solutions

1. (a) Since $p \equiv 1 \pmod{4}$, it follows that -1 is a quadratic residue modulo p. Thus, $-1 \equiv x^2 \pmod{p}$ for some $x \in \mathbb{Z}$. This means that $p \mid x^2 + 1$.

(b) Assume that there are only finitely many primes p_1, \ldots, p_r of the form 4k + 1. Consider the number $N = 1 + 4(p_1 \ldots p_r)^2$, and let q be a prime dividing N. Clearly, $q \neq p_i$ for any $i = 1, \ldots r$. Also, since $q \mid N$, we get

$$-1 \equiv (2p_1 \dots p_r)^2 \pmod{q}.$$

Thus, -1 is a quadratic residue modulo q, which happens precisely when $q \equiv 1 \pmod{4}$. This means that q is a prime of the form 4k + 1, which is not in our initial list. This condradicts the finiteness assumption, so there are infinitely many primes of the form 4k + 1.

2. (a) Assume that a is a primitive root modulo p, which is also a quadratic residue modulo p. On the one hand, by Euler's identity:

$$\left(\frac{a}{p}\right) \equiv a^{(p-1)/2} \pmod{p}.$$

Since a is a quadratic residue, we obtain $a^{(p-1)/2} \equiv 1 \pmod{p}$, so $\operatorname{ord}_p(a) \leq (p-1)/2$.

On the other hand a is also a primitive root, i.e., $\operatorname{ord}_p(a) = p - 1$, which is a contradicition. Therefore, no primitive root a can be a quadratic residue modulo p.

(b) Just note that

$$(p-1)! = 1 \cdot 2 \cdot \ldots \cdot (p-1)$$

$$\equiv a^{1+2+\ldots+(p-1)} \pmod{p}$$

$$\equiv a^{(p-1)p/2} \pmod{p}$$

$$\equiv \left(\frac{a}{p}\right)^p \pmod{p},$$

where the last step follows from Euler's identity.

(c) From (a) we have that a is a quadratic nonresidue, so $\left(\frac{a}{p}\right) = -1$. Thus, (b) implies that

$$(p-1)! \equiv (-1)^p = -1 \pmod{p},$$

since p is odd.

- 3. We distinguish two cases depending on $p \pmod{4}$.
 - If $p \equiv 1 \pmod{4}$, then by the Law of Quadratic Reciprocity followed by Euler's identity:

$$\left(\frac{3}{p}\right) = \left(\frac{p}{3}\right) \equiv p^{(3-1)/2} \equiv p \pmod{3}.$$

Therefore $\left(\frac{3}{p}\right) = 1$ if and only $p \equiv 1 \pmod{3}$. Since $p \equiv 1 \pmod{4}$ and $p \equiv 1 \pmod{3}$, it follows that $p \equiv 1 \pmod{12}$, in this case.

• If $p \equiv -1 \pmod{4}$ a similar analysis shows that $p \equiv -1 \pmod{12}$.

4. (a) Note that we can factor n = (a + bi)(a - bi) in $\mathbb{Z}[i]$. If n is a Gaussian prime, then either a + bi or a - bi must be an unit. The only units in $\mathbb{Z}[i]$ are ± 1 and $\pm i$. Since $a \neq 0$, it follows that $a = \pm 1$ and b = 0. However, in that case n is a unit, so it cannot be a Gaussian prime (by definition).

(b). This is not necessarily true. One possible counterexample is given by x = 3 + 4i and y = 5. Clearly, N(x) = N(y) = 25 so N(x) | N(y). However,

$$\frac{5}{3+4i} = \frac{5(3-4i)}{(3+4i)(3-4i)} = \frac{5(3-4i)}{25} = \frac{3}{5} - \frac{4}{5}i.$$

which is not an element of $\mathbb{Z}[i]$. Thus, $x \nmid y$.

- 5. Recall that $z \in \mathbb{Z}[i]$ is a Gaussian prime if and only if one of the following conditions holds:
 - (i) N(z) is a prime integer,
- (ii) z is a unit times a prime integer that is congruent to 3 (mod 4).

Now, 1 + i and 3 - 2i are Gaussian primes because their norms are prime integers. Also, $-103i = (-i) \cdot 103$ is a Gaussian prime beacuse (-i) is a unit and $103 \equiv 3 \pmod{4}$. The other three elements from the list are not Gaussian primes, because they do not meet any of above criteria. In fact, one can factor them into a product of two Gaussian integers, none of which is a unit:

$$101i = (10+i)(1+10i),$$

$$11+2i = (1+2i)(3-4i),$$

$$7+5i = (1-i)(1+6i).$$

6. If p = 7 the quadratic character of 2 gives that $\left(\frac{2}{7}\right) = 1$, so the pair (1, 2) works. Without loss of generality, assume $p \ge 11$. Consider the following three pairs of consecutive integers:

$$(1,2), (4,5)$$
 and $(9,10)$.

It is clear that 1, 4 and 9 are all quadratic residues (since they are all squares). If either 2 or 5 is a quadratic residue modulo p, then one of the first two pairs satisfies the statement. Otherwise,

$$\left(\frac{10}{p}\right) = \left(\frac{2}{p}\right) \cdot \left(\frac{5}{p}\right) = (-1) \cdot (-1) = 1,$$

so the third pair works.