Practice problems for the Final Exam

Liubomir Chiriac

1. (a) Let $p \equiv 1(\bmod 4)$ be a prime. Prove that there exists some $x \in \mathbb{Z}$ such that $p \mid x^{2}+1$.
(b) Use the quadratic character of -1 to prove that there are infintely many primes of the form $4 k+1$. (Hint: Assume that there are only finitely many such primes: p_{1}, \ldots, p_{r}. Let q be a prime factor of $N=1+4\left(p_{1} \ldots p_{r}\right)^{2}$. What is $q(\bmod 4) ?$)
2. Let a be a primitive root modulo an odd prime p.
(a) Can a be a quadratic residue modulo p ? (Hint: Look at $\operatorname{ord}_{p}(a)$.)
(b) We have proved in class that the numbers $a^{1}, a^{2}, \ldots, a^{p-1}$ are congruent modulo p, in some order, to $1,2, \ldots, p-1$. Use this observation to show that

$$
(p-1)!\equiv\left(\frac{a}{p}\right)^{p}(\bmod p)
$$

(c) Combining (a) and (b) give another proof of Wilson's Theorem.
3. Let p be an odd prime. Use the Law of Quadratic Reciprocity to prove that

$$
\left(\frac{3}{p}\right)=1 \text { if and only if } p \equiv 1(\bmod 12) \text { or } p \equiv-1(\bmod 12) .
$$

(Hint: Consider two separate cases depending on $p(\bmod 4)$.)
4. (a) Let $a, b \in \mathbb{Z}$ such that $a \neq 0$. Prove that $n=a^{2}+b^{2}$ is not a Gaussian prime.
(b) If $x, y \in \mathbb{Z}[i]$ such that $N(x) \mid N(y)$, is it necessarily true that $x \mid y$?
5. Which elements of the set $\{i+1,3-2 i, 101 i, 11+2 i,-103 i, 7+5 i\}$ are Gaussian primes?
6. Let $p \geq 7$ be a prime. Prove that there exist two consecutive integers that are both quadratic residues modulo p. (Hint: $2 \cdot 5=10$.)

Solutions

1. (a) Since $p \equiv 1(\bmod 4)$, it follows that -1 is a quadratic residue modulo p. Thus, $-1 \equiv$ $x^{2}(\bmod p)$ for some $x \in \mathbb{Z}$. This means that $p \mid x^{2}+1$.
(b) Assume that there are only finitely many primes p_{1}, \ldots, p_{r} of the form $4 k+1$. Consider the number $N=1+4\left(p_{1} \ldots p_{r}\right)^{2}$, and let q be a prime dividing N. Clearly, $q \neq p_{i}$ for any $i=1, \ldots r$. Also, since $q \mid N$, we get

$$
-1 \equiv\left(2 p_{1} \ldots p_{r}\right)^{2}(\bmod q)
$$

Thus, -1 is a quadratic residue modulo q, which happens precisely when $q \equiv 1(\bmod 4)$. This means that q is a prime of the form $4 k+1$, which is not in our initial list. This condradicts the finiteness assumption, so there are infinitely many primes of the form $4 k+1$.
2. (a) Assume that a is a primitive root modulo p, which is also a quadratic residue modulo p. On the one hand, by Euler's identity:

$$
\left(\frac{a}{p}\right) \equiv a^{(p-1) / 2}(\bmod p)
$$

Since a is a quadratic residue, we obtain $a^{(p-1) / 2} \equiv 1(\bmod p)$, so $\operatorname{ord}_{p}(a) \leq(p-1) / 2$.
On the other hand a is also a primitive root, i.e., $\operatorname{ord}_{p}(a)=p-1$, which is a contradicition. Therefore, no primitive root a can be a quadratic residue modulo p.
(b) Just note that

$$
\begin{aligned}
(p-1)! & =1 \cdot 2 \cdot \ldots \cdot(p-1) \\
& \equiv a^{1+2+\ldots+(p-1)}(\bmod p) \\
& \equiv a^{(p-1) p / 2}(\bmod p) \\
& \equiv\left(\frac{a}{p}\right)^{p}(\bmod p)
\end{aligned}
$$

where the last step follows from Euler's identity.
(c) From (a) we have that a is a quadratic nonresidue, so $\left(\frac{a}{p}\right)=-1$. Thus, (b) implies that

$$
(p-1)!\equiv(-1)^{p}=-1(\bmod p)
$$

since p is odd.
3. We distinguish two cases depending on $p(\bmod 4)$.

- If $p \equiv 1(\bmod 4)$, then by the Law of Quadratic Reciprocity followed by Euler's identity:

$$
\left(\frac{3}{p}\right)=\left(\frac{p}{3}\right) \equiv p^{(3-1) / 2} \equiv p(\bmod 3)
$$

Therefore $\left(\frac{3}{p}\right)=1$ if and only $p \equiv 1(\bmod 3)$. Since $p \equiv 1(\bmod 4)$ and $p \equiv 1(\bmod 3)$, it follows that $p \equiv 1(\bmod 12)$, in this case.

- If $p \equiv-1(\bmod 4)$ a similar analysis shows that $p \equiv-1(\bmod 12)$.

4. (a) Note that we can factor $n=(a+b i)(a-b i)$ in $\mathbb{Z}[i]$. If n is a Gaussian prime, then either $a+b i$ or $a-b i$ must be an unit. The only units in $\mathbb{Z}[i]$ are ± 1 and $\pm i$. Since $a \neq 0$, it follows that $a= \pm 1$ and $b=0$. However, in that case n is a unit, so it cannot be a Gaussian prime (by definition).
(b). This is not necessarily true. One possible counterexample is given by $x=3+4 i$ and $y=5$. Clearly, $N(x)=N(y)=25$ so $N(x) \mid N(y)$. However,

$$
\frac{5}{3+4 i}=\frac{5(3-4 i)}{(3+4 i)(3-4 i)}=\frac{5(3-4 i)}{25}=\frac{3}{5}-\frac{4}{5} i
$$

which is not an element of $\mathbb{Z}[i]$. Thus, $x \nmid y$.
5. Recall that $z \in \mathbb{Z}[i]$ is a Gaussian prime if and only if one of the following conditions holds:
(i) $N(z)$ is a prime integer,
(ii) z is a unit times a prime integer that is congruent to $3(\bmod 4)$.

Now, $1+i$ and $3-2 i$ are Gaussian primes because their norms are prime integers. Also, $-103 i=$ $(-i) \cdot 103$ is a Gaussian prime beacuse $(-i)$ is a unit and $103 \equiv 3(\bmod 4)$. The other three elements from the list are not Gaussian primes, because they do not meet any of above criteria. In fact, one can factor them into a product of two Gaussian integers, none of which is a unit:

$$
\begin{aligned}
101 i & =(10+i)(1+10 i), \\
11+2 i & =(1+2 i)(3-4 i), \\
7+5 i & =(1-i)(1+6 i) .
\end{aligned}
$$

6. If $p=7$ the quadratic character of 2 gives that $\left(\frac{2}{7}\right)=1$, so the pair $(1,2)$ works. Without loss of generality, assume $p \geq 11$. Consider the following three pairs of consecutive integers:

$$
(1,2),(4,5) \text { and }(9,10)
$$

It is clear that 1,4 and 9 are all quadratic residues (since they are all squares). If either 2 or 5 is a quadratic residue modulo p, then one of the first two pairs satisfies the statement. Otherwise,

$$
\left(\frac{10}{p}\right)=\left(\frac{2}{p}\right) \cdot\left(\frac{5}{p}\right)=(-1) \cdot(-1)=1
$$

so the third pair works.

