Show all your work and justify al your answers!

1. (18 points) Let C be the circle of radius 2 centered at the origin and oriented counterclockwise. Evaluate the following integrals.

$$
\text { (a) } \int_{C} \frac{d z}{z^{2}+2 z-3}=\int_{(z+3)(z-1)} \frac{\left(\frac{1}{(z+3)}\right)}{z-1} d z \text {. }
$$

The function $f(z)=\frac{1}{2+3}$ is hold on $\{2: 1 z k 3\}$ and so on C and cat point intereas to C,
We get that $\int_{C} f(z) / z-1 d z=(2 \pi i) f(1)=\frac{2 \pi i}{4}=\frac{\pi i}{2}$
Cauchy's Formula
9 pts
(b) $\int_{C} \log (z+5) d z$, where $\log (z)$ is the principal branch of the logarithm funcion with argument in $(-\pi, \pi)$.
The function $\log (z)$ is halo on $\mathbb{C} \backslash\{z, \operatorname{Im}(z)=0, \operatorname{Re}(z) \leqslant 0\}$
There $\log (2+5)$ is halo an $\mathbb{C} \backslash\{2 ; \operatorname{Im}(2)=0, \operatorname{Re}(2) \leq-5\}$ pointo interior to C. Thus

$$
\int_{C} \log (z+5) d z=0
$$

by Cauchy-Goursat's Theorems,
2. (18 points) Let C be the unit circle oriented counterclockwise and let z_{0} be a complex number satisfying $\left|z_{0}\right| \neq 1$. Prove the equality

6 pto

$$
\int_{C} \frac{\sin \left(z^{2}\right)}{\left(z-z_{0}\right)^{2}} d z=\int_{C} \frac{2 z \cos \left(z^{2}\right)}{z-z_{0}} d z .
$$

Care 1: If $\left|z_{0}\right|>1$, then both $\frac{\sin ^{\prime}\left(z^{2}\right)}{\left(z-z_{0}\right)^{2}}$ and $\frac{2 z \cos \left(z^{2}\right)}{z-z_{0}}$ are analytic along C_{1} and at all points interior to C Thus, both sides are zero.
care $2: \sqrt[19 p^{\prime}]{1 / f}\left|z_{0}\right|<0$ then
RUS $=\operatorname{ari}\left(2 z_{0} \operatorname{cas}\left(z_{0}^{2}\right)\right)$, by Cauchy's Integral Formula. $\angle H S=2 \pi i^{\prime} \frac{\partial}{\partial z / z_{0}} \sin \left(z^{2}\right)=2 \pi i \cos \left(z_{0}^{2}\right) \cdot 2 z_{0}$,
by cauchy's integral formulas for higher derivatives
3. (10 points) Let $f(z)=e^{\left(z^{2}\right)} \sin \left(z^{4}+z-2\right)$. Does f have an anti-derivative? In other words, does there exist an entire function $F(z)$, such that $F^{\prime}(z)=f(z)^{\text {? }}$. Carefully justify your answer.
The complex plain \mathbb{C} is simply-connected and
$f(2)$ is analytic i in the whole of (1. Thus, $\int_{C} f(z) d z=0$ along any dosed contour in \mathbb{C}.
By a baric Theorem, fo hos an anti-desuature.
4. (18 points) Let C_{1} be the circle of radius 2 centered at $2 i$ oriented counterclockwise. Let C_{2} be the circle of radius 5 centered at the origin oriented counterclockwise. Set $f(z):=\frac{1}{\left(z^{2}+1\right)^{2}}$. Evaluate the difference $\int_{C_{2}} f(z) d z-\int_{C_{1}} f(z) d z$.
Hint: Cauchy-Goursat's Theorem for multiply connected regions helps. Clearly state it and explain why its all hypothesis are satisfied in the set-up in which you apply it.

$$
z^{2}+1=(z-i)(z+i)
$$

Let C_{3} be the circle of Maris $\frac{1}{2}$
 centered at $-i$ and oriented counter clockwise,

The function $f(z)$ is analytic along C_{2} and at all pointo interior to C_{12}, which we mot interior to G_{1} mon to C_{3}. Thus Candny-Gowrat's theorem for multiply connected domains imphes the equality

$$
\int_{C_{2}} f(z) d z=\int_{C_{1}} f(z) d z+\int_{C_{3}} f(z) d z
$$

$\operatorname{Hen}\left(e, \int_{c_{2}} f(z) d z-\int_{c_{1}} f(z) d z=\int_{c_{3}} f(z) d z\right.$.
Now,

$$
\left.\int_{C_{3}} f(z) d z=\int_{C_{3}} \frac{\left[1 /(z-i)^{2}\right]}{(z+i)^{2}} d z=\frac{C_{3}}{2 \pi} \frac{2 \pi}{\gamma z} \right\rvert\, \frac{1}{(z-i)^{2}}
$$

$$
=2 \pi i(-2) \frac{1}{(-i-i)^{3}}=2 \pi i\left(\frac{-2}{8 i}\right)=\frac{-\pi}{2} 2 p t a
$$

5. (18 points) g pto

(a) Let U be the upper half-plane $\{x+i y: y>0\}$ of the complex plane. Set $g(z):=e^{i z}$. Describe geometrically the image $g(U)$ of U under the function
Fix y_{0}. Then $g\left(x+i y_{0}\right)=e^{i\left(x+i y_{0}\right)}=e^{-y_{0}+i x}=e^{-y_{0}} \cdot e^{i x}$ so g maps the horizontal line $y=y_{0}$ onto the circle of radius $e^{-y_{0}}$ Now, $y_{0}>0$, so $0<e^{-y_{0}}<e^{0}=1$
As y_{0} varies in $(0, \infty)$, $e^{-y_{0}}$ varies in (0,1).
We conclude that $g e^{e_{0}}$ maps vas in co, on to the punctured unit disk

$$
D^{*}:=\{z: 0<|2|<1\}_{0}
$$

Note: e^{z} maps, the left half plane $L:=\{x+i y: x<0\}$ on D. Multiplication by i restated U onto L. Hence g maps U onto D^{*}.
(b) Suppose that $f(z)$ is an entire function. Write $f(x+i y)=u(x, y)+i v(x, y)$. g pto Assume that $v(x, y) \geq u(x, y)$, for all points (x, y) in the plane. Note that the assumption means that the values of f are all in the half-plane above the line $v=u$ in the (u, v) plane. Show that $f(z)$ is a constant function. Hint: Consider the function $g(z)=e^{\lambda f(z)}$, for a suitable constant λ.

Denote by V the upper half of the plane consisting of $\{u+i v: v \geqslant u\}$.
A point $w=u+i v$ in v has polar form $r e^{i \theta} \frac{\pi}{4}<\theta<\frac{5 \pi}{4}$, set $\lambda=e^{i \pi / 4}$. sion $\lambda \omega=r e^{i\left(\theta+\frac{\pi}{4}\right)}$, and

$$
\frac{\pi}{2} \leqslant \theta+\frac{\pi}{4} \leqslant \frac{6 \pi}{4}=\frac{2 \pi}{3}
$$

So $\lambda \omega$ belongs to the left half plane

$$
\operatorname{Re}(\lambda w) \leqslant O_{0}
$$

LEo $\left|e^{\lambda \omega}\right|=\left|e^{\operatorname{Re}(\lambda(s)}\right| \leqslant\left|e^{0}\right|=1$,

[Now, $f(z)$ has values in VJ so $\left|e^{\lambda f(z)}\right| \leqslant 1, \ldots$ so $e^{\lambda f(z)}$ is a bounded entire function, so 4 pts $e^{\lambda f(2)}$ is constant, by Liouville's Theorem, Hence,
6. (18 points) Let C_{R} denote the circle of radius $R, R>2$, centered at the origin and oriented counterclockwise. Set $I_{R}:=\int_{C_{R}} \frac{z^{2}+9}{z^{4}+3 z^{2}+2} d z$. g g to
Let $z=R e^{i t}$
(a) Prove the inequality $\left|I_{R}\right| \leq \frac{2 \pi R\left(R^{2}+9\right)}{\left(R^{2}-1\right)\left(R^{2}-2\right)}$.

$$
\begin{aligned}
& \left|z^{2}+9\right| \leqslant\left|z^{2}\right|+9=|z|^{2}+9=R^{2}+9 \\
& \left|z^{4}+3 z^{2}+2\right|=\left|\left(z^{2}+1\right)\left(z^{2}+2\right)\right|=\left|z^{2}+1\right|\left|z^{2}+2\right| \geqslant \\
& \quad \geqslant\left|\left|z^{2}\right|-1\right|| | z^{2}|-2|=\left(R^{2}-1\right)\left(R^{2}-2\right)
\end{aligned}
$$

Thus, $\left|\frac{z^{2}+9}{z^{4}+3 z^{2}+2}\right| \leqslant \frac{R^{2}+9}{\left(R^{2}-1\right)\left(R^{2}-2\right)}$
$I_{R} \leqslant$ length $\left(C_{R}\right), \frac{R^{2}+9}{\left(R^{2}-1\right)\left(R^{2}-2\right)}=2 \pi R \frac{\left(R^{2}+9\right)}{\left(R^{2}-1\right)\left(R^{2}-2\right)}$
(b) Prove that $\lim _{R \rightarrow \infty} I_{R}=0$.

$$
\lim _{R \rightarrow \infty} \frac{2 \pi R\left(R^{2}+9\right)}{\left(R^{2}-1\right)\left(R^{2}-2\right)}=\lim _{R \rightarrow \infty} \frac{2 \pi}{R}
$$

Now use the
7 pto smedwitch (squeeze) Theorem

$$
\frac{\left(1+\frac{9}{R^{2}}\right)^{1}}{\left(1-\frac{1}{R^{2}}\right)\left(1-\frac{2}{R^{2}}\right)}=0 \cdot \frac{1}{1}=0
$$

(c) Prove that $I_{R}=0$, for all $R \geq 2$. in equartites m and the
$F_{\text {ar }}$ ally $R \geqslant 2$, we have $I_{R}=I_{2}$, since the function $l(z)=\frac{z^{2}+9}{\left(z^{2}+1\right)\left(z^{2}+2\right)}$ is analytri on $\mathbb{C} \backslash\{i, \pm \sqrt{2} i\}$ and in particular al org I_{R} and at all points interior to C_{R} and exterior $t_{0} I_{2}$ (use the principle f_{2} deformations of the path. NOW

$$
\begin{aligned}
0<\left|I_{2}\right|=\left|I_{R}\right| & =\lim _{R \rightarrow \infty}\left|I_{R}\right|=0 \\
& \text { since constant as a bund of } R
\end{aligned}
$$

Thees $\left|I_{R}\right|=0$,

