Show all your work and justify al your answers!

1. (18 points) Let C be the circle of radius 2 centered at the origin and oriented counterclockwise. Evaluate the following integrals.
(a) $\int_{C} \frac{d z}{z^{2}+2 z-3}$
(b) $\int_{C} \log (z+5) d z$, where $\log (z)$ is the principal branch of the logarithm function with argument in $(-\pi, \pi)$.
2. (18 points) Let C be the unit circle oriented counterclockwise and let z_{0} be a complex number satisfying $\left|z_{0}\right| \neq 1$. Prove the equality

$$
\int_{C} \frac{\sin \left(z^{2}\right)}{\left(z-z_{0}\right)^{2}} d z=\int_{C} \frac{2 z \cos \left(z^{2}\right)}{z-z_{0}} d z
$$

3. (10 points) Let $f(z)=e^{\left(z^{2}\right)} \sin \left(z^{4}+z-2\right)$. Does f have an anti-derivative? In other words, does there exist an entire function $F(z)$, such that $F^{\prime}(z)=f(z)$. Carefully justify your answer.
4. (18 points) Let C_{1} be the circle of radius 2 centered at $2 i$ oriented counterclockwise. Let C_{2} be the circle of radius 5 centered at the origin oriented counterclockwise. Set $f(z):=\frac{1}{\left(z^{2}+1\right)^{2}}$. Evaluate the difference $\int_{C_{2}} f(z) d z-\int_{C_{1}} f(z) d z$.
Hint: Cauchy-Goursat's Theorem for multiply connected regions helps. Clearly state it and explain why its all hypothesis are satisfied in the set-up in which you apply it..
5. (18 points)
(a) Let U be the upper half-plane $\{x+i y: y>0\}$ of the complex plane. Set $g(z):=e^{i z}$. Describe geometrically the image $g(U)$ of U under the function g.
(b) Suppose that $f(z)$ is an entire function. Write $f(x+i y)=u(x, y)+i v(x, y)$. Assume that $v(x, y) \geq u(x, y)$, for all points (x, y) in the plane. Note that the assumption means that the values of f are all in the half-plane above the line $v=u$ in the (u, v) plane. Show that $f(z)$ is a constant function.
Hint: Consider the function $g(z)=e^{\lambda f(z)}$, for a suitable constant λ.
6. (18 points) Let C_{R} denote the circle of radius $R, R>2$, centered at the origin and oriented counterclockwise. Set $I_{R}:=\int_{C_{R}} \frac{z^{2}+9}{z^{4}+3 z^{2}+2} d z$.
(a) Prove the inequality

$$
\begin{equation*}
\left|I_{R}\right| \leq \frac{2 \pi R\left(R^{2}+9\right)}{\left(R^{2}-1\right)\left(R^{2}-2\right)} \tag{1}
\end{equation*}
$$

(b) Prove that $\lim _{R \rightarrow \infty} I_{R}=0$. Note that you are taking the limit of the left hand side of equation (1).
(c) Use part 6 b to prove that $I_{R}=0$, for all $R \geq 2$.

