Math 421 Fall 99 Final

1. Given that the first few terms of the Laurent series for the function $\cot(z)$ around z = 0 are:

$$\cot z = \frac{1}{z} - \frac{z}{3} - \frac{z^3}{45} - \frac{2z^5}{945} - \cdots$$

a) Find the principal part at z = 0 of the function $f(z) = \frac{(1+z)\cot z}{z^4}$.

b) Find all the singularities of f(z) in the disk $D = \{|z| < 5\}$. Determine the nature of each singularity (isolated, removable, pole of what order, essential).

- c) Find the residue at each isolated singularity in D.
- 2. Compute $\int_C \frac{\cos z}{e^{iz} 1} dz$, where C is the circle $\{|z| = 2\}$ (traversed counterclock-wise).
- 3. Compute $I := \int_C (e^{\sin(z)} + \bar{z}) dz$, where C is the circle $\{|z| = 2\}$ (traversed counterclockwise).

4. Compute
$$I := \int_0^{2\pi} \frac{d\theta}{2 + \cos(\theta)}$$

5. Compute $\int_0^\infty \frac{x^2}{1+x^6} dx$.

6. a) Find the Laurent series of the function f(z) = Logz/(z-i) around the point z₀ = i.
b) Find the Taylor series of the function f(z) = 1/(z²-3z+2) around the point z₀ = 0.

- 7. Determine whether the following statements are true or false. Justify your answers.
 - **a)** The limit $\lim_{z\to 0} \frac{e^z 1}{z}$ exists and is equal to 1.
 - **b)** There is a function f(z), analytic in the disk $D = \{|z| < 1\}$, such that

$$|f(z)|^2 = 4 - |z|^2$$
, for all z in D.

c) If f(z) has an isolated singularity at z_0 and $\operatorname{Res}_{z=z_0}(f) = 0$, then z_0 is a removeable singularity.

- 8. Compute $\cos(\frac{\pi}{2} i \ln 2)$. Simplify your answer as much as possible.
- 9. Prove that $\left| \int_{C} e^{iz^2} dz \right| < 5$, where C is the piece of the circle |z| = 2 going from 2 to 2*i* counter-clockwise.
- 10. Find an entire function f(z) such that $\operatorname{Re}(f) = 4x^3y 4xy^3 y$.