1. Given that the first few terms of the Laurent series for the function $\cot (z)$ around $z=0$ are:

$$
\cot z=\frac{1}{z}-\frac{z}{3}-\frac{z^{3}}{45}-\frac{2 z^{5}}{945}-\cdots
$$

a) Find the principal part at $z=0$ of the function $f(z)=\frac{(1+z) \cot z}{z^{4}}$.
b) Find all the singularities of $f(z)$ in the disk $D=\{|z|<5\}$. Determine the nature of each singularity (isolated, removable, pole of what order, essential).
c) Find the residue at each isolated singularity in D.
2. Compute $\int_{C} \frac{\cos z}{e^{i z}-1} d z$, where C is the circle $\{|z|=2\}$ (traversed counterclockwise).
3. Compute $I:=\int_{C}\left(e^{\sin (z)}+\bar{z}\right) d z$, where C is the circle $\{|z|=2\}$ (traversed counterclockwise).
4. Compute $I:=\int_{0}^{2 \pi} \frac{d \theta}{2+\cos (\theta)}$.
5. Compute $\int_{0}^{\infty} \frac{x^{2}}{1+x^{6}} d x$.
6. a) Find the Laurent series of the function $f(z)=\frac{\log z}{z-i}$ around the point $z_{0}=i$.
b) Find the Taylor series of the function $f(z)=\frac{1}{z^{2}-3 z+2}$ around the point $z_{0}=0$.
7. Determine whether the following statements are true or false. Justify your answers.
a) The limit $\lim _{z \rightarrow 0} \frac{e^{\bar{z}}-1}{z}$ exists and is equal to 1 .
b) There is a function $f(z)$, analytic in the disk $D=\{|z|<1\}$, such that

$$
|f(z)|^{2}=4-|z|^{2}, \quad \text { for all } z \text { in } D .
$$

c) If $f(z)$ has an isolated singularity at z_{0} and $\operatorname{Res}_{z=z_{0}}(f)=0$, then z_{0} is a removeable singularity.
8. Compute $\cos \left(\frac{\pi}{2}-i \ln 2\right)$. Simplify your answer as much as possible.
9. Prove that $\left|\int_{C} e^{i z^{2}} d z\right|<5$, where C is the piece of the circle $|z|=2$ going from 2 to $2 i$ counter-clockwise.
10. Find an entire function $f(z)$ such that $\operatorname{Re}(f)=4 x^{3} y-4 x y^{3}-y$.

