Name:

- 1. (36 points) Let $z = \frac{10}{\sqrt{3} i}$. Compute the following (in cartesian or polar form):
 - a) The polar form of z.
 - b) $|z^3|$
 - c) $Log(z^9)$
 - d) All values of $z^{\frac{1}{3}}$.
 - e) All values of z^{2i} .
- 2. (18 points) a) Find the image, under the principal branch of Log(z), of the set

$$\{z \text{ such that } |z| = 2 \text{ and } z \neq -2\}$$

(circle of radius 2, with the point -2 removed).

- b) Find the image of the vertical line x=2 under the function $f(z)=e^{iz}$.
- 3. (18 points) a) Compute cos(i).
 - b) Find all solutions of the equation cos(z) = 10.
- 4. (18 points) a) Prove that the function

$$u(x,y) = x^3 - 3xy^2 - 2x + e^{-y}\cos(x)$$

is harmonic on the whole of \mathbb{R}^2 .

- b) Find a harmonic conjugate v of the function u.
- c) Find an entire function f(z) such that Re(f) = u. Your answer must be expressed as a function of z = x + iy, not x and y.
- 5. (10 points) Let f(z) be an entire function, whose real and imaginary parts satisfy the following relation

$$\operatorname{Re}(f) = 2\operatorname{Im}(f).$$

Prove that f must be a constant function. Hint: Use the Cauchy-Riemann equations to prove that f'(z) = 0.