Name: \qquad

1. (36 points) Let $z=\frac{10}{\sqrt{3}-i}$. Compute the following (in cartesian or polar form):
a) The polar form of z.
b) $\left|z^{3}\right|$
c) $\log \left(z^{9}\right)$
d) All values of $z^{\frac{1}{3}}$.
e) All values of $z^{2 i}$.
2. (18 points) a) Find the image, under the principal branch of $\log (z)$, of the set

$$
\{z \text { such that }|z|=2 \text { and } z \neq-2\}
$$

(circle of radius 2, with the point -2 removed).
b) Find the image of the vertical line $x=2$ under the function $f(z)=e^{i z}$.
3. (18 points) a) Compute $\cos (i)$.
b) Find all solutions of the equation $\cos (z)=10$.
4. (18 points) a) Prove that the function

$$
u(x, y)=x^{3}-3 x y^{2}-2 x+e^{-y} \cos (x)
$$

is harmonic on the whole of \mathbb{R}^{2}.
b) Find a harmonic conjugate v of the function u.
c) Find an entire function $f(z)$ such that $\operatorname{Re}(f)=u$. Your answer must be expressed as a function of $z=x+i y$, not x and y.
5. (10 points) Let $f(z)$ be an entire function, whose real and imaginary parts satisfy the following relation

$$
\operatorname{Re}(f)=2 \operatorname{Im}(f)
$$

Prove that f must be a constant function. Hint: Use the Cauchy-Riemann equations to prove that $f^{\prime}(z)=0$.

