Assignment 4 (Due Tuesday March 1).
Section 30 page 94: 9, 10 (Method 1: check that its first and second partials are continuous and satisfies the Laplace equation. Method 2: realize this function as the real part of an analytic function).

Section 32 page 99: 1,2 (c), 3, 5, 6
Additional Problem: Let $\arctan : \mathbb{R} \rightarrow\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ be the inverse of the function $\tan :\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}$. Let $U:=\{z=x+i y: x>0\}$ be the open right half-plane. Set

$$
f(z):=\frac{\ln \left(x^{2}+y^{2}\right)}{2}+i \arctan \left(\frac{y}{x}\right)
$$

for $z=x+i y$ in U.

1. Show that $f(z)=\log (z)$, for all $z \in U$, where $\log (z)$ is the principal branch of $\log (z)$. Conclude that $f(z)$ is analytic.
2. Provide a second proof that $f(z)$ is analytic by checking that the assumptions of the Theorem page 63 in section 21 are satisfied (the partials of the real and imaginary components are continuous, and the Cauchy-Riemann equations are satisfied).
3. Use the function arccos: $(-1,1) \rightarrow(0, \pi)$ in order to express the imaginary part of $\log (z)$ in the upper-half-plane $\mathbb{H}:=\{z=x+i y: y>0\}$.
