Math 421 Midterm 1 Spring 2005

Name:

- 1. (36 points) Let $z = \frac{6}{\sqrt{2} \sqrt{2}i}$. Compute the following (in cartesian or polar form):
 - a) The polar form of z.
 - b) $|z^3|$
 - c) $Log(z^6)$
 - d) All values of $z^{\frac{1}{5}}$. How many different values are there?
 - e) All values of z^i . How many different values are there?
- 2. (10 points) Let f(z) be an entire function satisfying $|f(z)|^2 = 2$ for all z. Prove that f must be a constant function. *Hint: Show that the conjugate function* $\overline{f(z)}$ must be entire. Then use the Cauchy-Riemann equations to prove that f'(z) = 0.
- 3. (18 points) a) Compute the Cartesian coordinates of $\sin(2i)$.

b) Find the set of points in the plane, where the function $\frac{z}{\sin(z) - 2i\cos(z)}$ is differentiable. Justify your answer!

4. (18 points) a) Prove that the function

$$u(x,y) = e^x \sin(y) + e^y \cos(x) + 2xy$$

is harmonic on the whole of \mathbb{R}^2 .

- b) Find a harmonic conjugate v of the function u.
- c) Find an entire function f(z) such that Re(f) = u. Your answer must be expressed as a function of z = x + iy, not x and y.
- 5. (18 points) a) Find the image of the horizontal line y = 1/4 under the function $f(z) = e^{\pi z}$.
 - b) Find the image, under the principal branch of Log(z), of the set

 $\{z \text{ such that } |z| < 1 \text{ and } \operatorname{Re}(z) > 0\}$

(the right half of the unit disk).