1. (36 points) Let \(z = \frac{6}{\sqrt{2} - \sqrt{2}i} \). Compute the following (in cartesian or polar form):

 a) The polar form of \(z \).

 b) \(|z^3| \)

 c) \(\log(z^6) \)

 d) All values of \(z^{1/2} \). How many different values are there?

 e) All values of \(z^i \). How many different values are there?

2. (10 points) Let \(f(z) \) be an entire function satisfying \(|f(z)|^2 = 2 \) for all \(z \). Prove that \(f \) must be a constant function. **Hint:** Show that the conjugate function \(\overline{f(z)} \) must be entire. Then use the Cauchy-Riemann equations to prove that \(f'(z) = 0 \).

3. (18 points) a) Compute the Cartesian coordinates of \(\sin(2i) \).

 b) Find the set of points in the plane, where the function \(\frac{z}{\sin(z) - 2i \cos(z)} \) is differentiable. Justify your answer!

4. (18 points) a) Prove that the function
 \[
 u(x, y) = e^x \sin(y) + e^y \cos(x) + 2xy
 \]
 is harmonic on the whole of \(\mathbb{R}^2 \).

 b) Find a harmonic conjugate \(v \) of the function \(u \).

 c) Find an entire function \(f(z) \) such that \(\text{Re}(f) = u \). Your answer must be expressed as a function of \(z = x + iy \), not \(x \) and \(y \).

5. (18 points) a) Find the image of the horizontal line \(y = 1/4 \) under the function \(f(z) = e^{\pi z} \).

 b) Find the image, under the principal branch of \(\log(z) \), of the set
 \[
 \{ z \text{ such that } |z| < 1 \text{ and } \text{Re}(z) > 0 \}
 \]
 (the right half of the unit disk).