Name: \qquad

1. (36 points) Let $z=\frac{6}{\sqrt{2}-\sqrt{2} i}$. Compute the following (in cartesian or polar form):
a) The polar form of z.
b) $\left|z^{3}\right|$
c) $\log \left(z^{6}\right)$
d) All values of $z^{\frac{1}{5}}$. How many different values are there?
e) All values of z^{i}. How many different values are there?
2. (10 points) Let $f(z)$ be an entire function satisfying $|f(z)|^{2}=2$ for all z. Prove that f must be a constant function. Hint: Show that the conjugate function $\overline{f(z)}$ must be entire. Then use the Cauchy-Riemann equations to prove that $f^{\prime}(z)=0$.
3. (18 points) a) Compute the Cartesian coordinates of $\sin (2 i)$.
b) Find the set of points in the plane, where the function $\frac{z}{\sin (z)-2 i \cos (z)}$ is differentiable. Justify your answer!
4. (18 points) a) Prove that the function

$$
u(x, y)=e^{x} \sin (y)+e^{y} \cos (x)+2 x y
$$

is harmonic on the whole of \mathbb{R}^{2}.
b) Find a harmonic conjugate v of the function u.
c) Find an entire function $f(z)$ such that $\operatorname{Re}(f)=u$. Your answer must be expressed as a function of $z=x+i y$, not x and y.
5. (18 points) a) Find the image of the horizontal line $y=1 / 4$ under the function $f(z)=e^{\pi z}$.
b) Find the image, under the principal branch of $\log (z)$, of the set

$$
\{z \text { such that }|z|<1 \text { and } \operatorname{Re}(z)>0\}
$$

(the right half of the unit disk).

