1. (36 points) Let $z=\frac{6}{\sqrt{2}-\sqrt{2} i}$. Compute the following (in cartesian or polar form):
a) (8 points) The polar form of z is $z=\frac{6(\sqrt{2}+\sqrt{2} i)}{(\sqrt{2})^{2}+(\sqrt{2})^{2}}=3 e^{\pi i / 4}$.
b) (7 points) $\left|z^{3}\right|=|z|^{3}=3^{3}=27$.
c) $(7$ points $) \log \left(z^{6}\right)=\log \left(3^{6} e^{3 \pi i / 2}\right)=6 \ln (3)-i \pi / 2$
d) (7 points) The five values of $z^{\frac{1}{5}}$ are: $3^{1 / 5} \cdot e^{i[\pi / 20+2 n \pi / 5]}$, where $n=0,1,2,3,4$.
e) (7 points) The values of z^{i} are:
$\left(3 e^{i \pi / 4}\right)^{i}=e^{i\left[\log \left(3 e^{i \pi / 4}\right)\right]}=e^{i[\ln (3)+i(\pi / 4+2 n \pi i)]}=e^{-\pi / 4-2 n \pi+i \ln (3)}$, where n is an integer.
There are infinitely many such values.
2. (10 points) Let $f(z)$ be an entire function satisfying $|f(z)|^{2}=2$ for all z. Prove that f must be a constant function. Hint: Show that the conjugate function $\overline{f(z)}$ must be entire. Then use the Cauchy-Riemann equations to prove that $f^{\prime}(z)=0$.
Method 1: We first show that $\overline{f(z)}$ is entire (analytic at every point of the plane): The equality $2=|f(z)|^{2}=f(z) \cdot \overline{f(z)}$ implies, that $\overline{f(z)}=2 / f(z)$ and $f(z)$ does not vanish. By the quotient rule of differentiation, $2 / f(z)$ is entire.
Write $f(z)=u(x, y)+i v(x, y)$. Then $\overline{f(z)}=u(x, y)-i v(x, y)$. The CauchyRiemann equations (1), (2) for $f(z)$ and (3), (4) for $\overline{f(z)}$ are:

$$
\begin{align*}
u_{x} & =v_{y} \text { and } \tag{1}\\
u_{y} & =-v_{x}, \tag{2}\\
u_{x} & =\left(-v_{y}\right) \text { and } \tag{3}\\
u_{y} & =-\left(-v_{x}\right) . \tag{4}
\end{align*}
$$

Equations (1) and (3) imply that $u_{x}=u_{y}=0$. Equations (2) and (4) imply that $u_{y}=v_{x}=0$. We conclude that u and v, and hence also f, are constant functions.
Method 2: (without showing that $\overline{f(z)}$ is entire). Write $f(z)=u(x, y)+i v(x, y)$. Diffrerentiate both sides of the given equality $u^{2}+v^{2}=2$ to get: $2 u u_{x}+2 v v_{x}=0$ and $2 u u_{y}+2 v v_{y}=0$. Use the Cauchy-Riemann equations to replace the second equality by an equality involving the partials u_{x} and v_{x}. We get the system of two linear equations in u_{x} and v_{x} :

$$
\begin{aligned}
& 2 u u_{x}+2 v v_{x}=0 \\
& 2 v u_{x}-2 u v_{x}=0
\end{aligned}
$$

whose matrix $\left[\begin{array}{cc}2 u & 2 v \\ 2 v & -2 u\end{array}\right]$ has determinant $-4\left(u^{2}+v^{2}\right)=-8 \neq 0$. Hence, the system has only the trivial solution $u_{x}=v_{x}=0$. The Cauchy-Riemann equations imply also that $u_{y}=v_{y}=0$ and hence f is a constant function.
3. a) $(6$ points $) \sin (2 i)=\frac{e^{i(2 i)}-e^{-i(2 i)}}{2 i}=\frac{e^{-2}-e^{2}}{2 i}=\left[\frac{-e^{-2}+e^{2}}{2}\right] i$.
b) (12 points) Find the set of points in the plane, where the function $f(z):=\frac{z}{\sin (z)-2 i \cos (z)}$ is differentiable. Justify your answer!
Answer: The functions $z, \sin (z)$, and $\cos (z)$ are entire. Hence, $\sin (z)-2 i \cos (z)$ is entire, and the quotient $f(z)$ is analytic at every point, where the denominator does not vanish (the quotient differentiation rule). The points where the denominator vanishes are the solution of $\sin (z)=2 i \cos (z)$, which, by definition, is

$$
\frac{e^{i z}-e^{-i z}}{2 i}=2 i \frac{e^{i z}+e^{-i z}}{2}
$$

Multimply both sides by $2 i$ and collect the terms to get $3 e^{i z}=-e^{-i z}$.
Multiply both sides by $e^{i z}$ to get $e^{2 i z}=-1 / 3=1 / 3 e^{\pi i}$. Set $z:=x+i y$. We get

$$
\begin{aligned}
e^{-2 y+2 i x}=1 / 3 e^{\pi i} & \text { or } \\
-2 y=\ln (1 / 3) & \text { and } 2 i x=i \pi+2 n \pi i .
\end{aligned}
$$

The general solution is $y=\ln (3) / 2$ and $x=\frac{\pi}{2}+n \pi$, where n in an integer.
4. a) (6 points) The function $u(x, y)=e^{x} \sin (y)+e^{y} \cos (x)+2 x y$ is harmonic on the whole of \mathbb{R}^{2}, because it satisfies the Laplace equation $u_{x x}+u_{y y}=0$. We verify this by plugging in (or by answering part (c) first).

$$
\begin{aligned}
u_{x} & =e^{x} \sin (y)-e^{y} \sin (x)+2 y, \\
u_{x x} & =e^{x} \sin (y)-e^{y} \cos (x), \\
u_{y} & =e^{x} \cos (y)+e^{y} \cos (x)+2 x, \\
u_{y y} & =-e^{x} \sin (y)+e^{y} \cos (x) .
\end{aligned}
$$

b) (8 points) The harmonic conjugate v of the function u satisfies the two CauchyRieman equations $v_{x}=-u_{y}$ and $v_{y}=u_{x}$. Integrating the second, we get:
$v(x, y)=\int u_{x} d y=\int\left[e^{x} \sin (y)-e^{y} \sin (x)+2 y\right] d y=-e^{x} \cos (y)-e^{y} \sin (x)+y^{2}+h(x)$.
We find $h^{\prime}(x)$ using the first equation $v_{x}=-u_{y}$:
$-e^{x} \cos (y)-e^{y} \cos (x)+h^{\prime}(x)=-\left[e^{x} \cos (y)+e^{y} \cos (x)+2 x\right]$.
Hence, $h^{\prime}(x)=-2 x, h(x)=-x^{2}+C$, and the harmonic conjugate is: $v(x, y)=-e^{x} \cos (y)-e^{y} \sin (x)+y^{2}-x^{2}+C$.
c) (4 points) Find an entire function $f(z)$ such that $\operatorname{Re}(f)=u$.

Answer: $f(z)=-i e^{z}+e^{-i z}-i z^{2}$.
5. a) (9 points) The general point on the horizontal line $y=1 / 4$ has the form $z=$ $x+(1 / 4) i$. The function $f(z)=e^{\pi z}$ takes this point to $e^{\pi x+\pi i / 4}=e^{\pi x} \cdot \frac{1+i}{\sqrt{2}}$. The image of the line $y=1 / 4$ under the function $f(z)=e^{\pi z}$ is the half-line obtained by multiplying $1+i$ by an arbitrary positive real number, namely the half-line with angle $\pi / 4$.
b) (9 points) Find the image, under the principal branch of $\log (z)$, of the set $\{z$ such that $|z|<1$ and $\operatorname{Re}(z)>0\}$ (the right half of the unit disk).
Answer: A general point in this half-disk has the form $z=r e^{i \theta}$, where $0<r<1$, and $-\pi / 2<\theta<\pi / 2$. Hence $\log (z)=\ln (r)+i \theta$, where $\ln (r)<0$. The image is the left-half strip: $\left\{x+i y\right.$ such that $x<0 \quad$ and $\left.\quad-\frac{\pi}{2}<y<\frac{\pi}{2}\right\}$.

