\qquad

1. (18 points) Compute the integral $\int_{C} \bar{z} d z$, where C is the triangle with vertices at the points 0,1 , and i, (traversed counterclockwise). Caution: The integrand is the complex conjugate \bar{z} of z.
2. (18 points) Let C be the ellipse cut out by the equation $(x / 3)^{2}+(y / 5)^{2}=1$, oriented counterclockwise. Compute $\int_{C} \frac{z^{3} d z}{(z-i)\left(z^{2}+1\right)}$.
3. (16 points) Suppose that $f(z)$ is entire and $|f(z)| \geq 1 / 2$, for all z in the complex plane. Prove that f is a constant function. Hint: The strategy is similar to the proof of the Fundamental Theorem of Algebra, but the actual proof is much simpler.
4. (16 points) Let C be the unit circle parametrized by $z(\theta)=e^{i \theta}, 0 \leq \theta \leq 2 \pi$.
(a) Show that for all integers $n, \int_{C}\left(e^{\left(z^{n}\right)} / z\right) d z=2 \pi i$.
(b) Derive the integration formula $\int_{0}^{2 \pi} e^{\cos (n \theta)} \cos (\sin (n \theta)) d \theta=2 \pi$, for every integer n.
5. (16 points) Let the domain D be the complex plane minus the non-negative part of the x-axis. Let $\log (z)$ be the branch of the logarithm function with argument in the interval $(0,2 \pi)$, so that $\log (z)$ is analytic in D. Set $f(z):=e^{(1 / 2) \log (z)}$. Note that $f(z)$ is a branch of the multi-valued function \sqrt{z}.
(a) Find a single valued anti-derivative $F(z)$ of $f(z)$ in D. Express your answer in terms of the above branch of $\log (z)$ and avoid using multi-valued rational powers of z. Check that your answer is indeed an anti-derivative, by explicitly differentiating it.
(b) Let C be the contour $z(\theta)=e^{i \theta}, \pi / 2 \leq \theta \leq 3 \pi / 2$. Prove the equality

$$
\int_{C} f(z) d z=\frac{2 \sqrt{2}}{3}
$$

6. (16 points) Let C be a circle of radius $7 / 2$ centered at the origin oriented counterclockwise. Set $g(n):=\int_{C} \frac{z^{5}+3 z+7}{(z-n)^{3}} d z$. Compute $g(n)$ for all integers n. Justify your answer!!!
