\qquad
Show all your work. Credit will not be given for an answer without a justification. Calculators may not be used in this exam.

1. (12 points) a) Find all the solutions of $\sin (z)=0$, for z in the complex plane. Prove your answer!
b) Is there a positive number M, such that the inequality $|\sin (z)| \leq M$ holds for all complex numbers z ? Justify your answer!
2. (14 points) The Laurent series of $\frac{1}{\sin (z)}$, in some punctured disk centered at 0 , has the form

$$
\begin{equation*}
\frac{1}{\sin (z)}=\frac{1}{z}+\frac{1}{6} z+\frac{7}{360} z^{3}+\frac{31}{15120} z^{5}+\cdots \text { terms of order at least seven. } \tag{1}
\end{equation*}
$$

You are not asked to derive equality (1).
(a) Find the principal part at $z=0$ of the function $f(z)=\frac{1+z}{z^{5} \cdot \sin (z)}$
(b) Find all the singularities of $f(z)$ (given in part 2a) in the disk $\{z:|z|<4\}$ and determine their type (isolated, removable, pole of what order, essential). Justify your answer!
(c) Find the residue of f (given in part 2 b) at each isolated singularity in D.
3. (10 points) Let f be a continuous function on the closed unit disk $R:=\{z:|z| \leq 1\}$, which is analytic in the open unit disk $\{z:|z|<1\}$. Assume that $f(z) \neq 0$, for all z in R. Show that $|f(z)|$ has a minimum m in R, which is equal to $\left|f\left(z_{0}\right)\right|$, for some z_{0} with $\left|z_{0}\right|=1$. Hint: Consider the function $g(z):=1 / f(z)$. Provide a precise statement of every theorem you use.
4. (16 points) Compute the following integrals. Show all your work!
(a) $\int_{C} \frac{e^{z}}{z^{3}-2 z^{2}} d z$, where C is the circle $\{z:|z|=3\}$ traversed counterclockwise.
(b) $\int_{C} \frac{\cos (z)+1}{e^{2 z}-e^{z}} d z$, where C is the circle $\{z:|z|=1\}$ traversed counterclockwise.
5. (12 points)
(a) Find the Taylor series of the function $f(z)=\frac{2}{z^{2}+4 z+3}=\frac{1}{z+1}-\frac{1}{z+3}$ centered at $z_{0}=0$. Where is $f(z)$ equal to the sum of its Taylor series? Justify your answer!
(b) Find the Laurant series representing f in the domain $\{z: 1<|z|<3\}$.
6. (10 points) Evaluate the integral $\int_{0}^{2 \pi} \frac{d \theta}{5+4 \sin (\theta)}$.
7. (12 points) Let C_{A} be the straight line segment from $A+i A$ to $-A+i A$, where A is a positive real number, and $A>1$. Prove the inequality $\left|\int_{C_{A}} \frac{e^{i z}}{z^{2}+1} d z\right| \leq \frac{2 A e^{-A}}{A^{2}-1}$.
8. (12 points) Evaluate the improper integral $\int_{0}^{\infty} \frac{d x}{x^{4}+1}$. Simplify your answer as much as possible. Carefully state any theorem you use.

