Extra problems on permutations

- 1. Use the composition table for S_3 on page 152 in the text in order to show that every permutation in S_3 can be written as a composition of σ_4 and σ_5 (the latter two are transpositions, see Problem 115 in Problem set 6). In other words, show that the set { $\sigma_4, \sigma_5, \sigma_4 \circ \sigma_4, \sigma_4 \circ \sigma_5, \sigma_5 \circ \sigma_4, \sigma_4 \circ \sigma_5 \circ \sigma_4$ } consists of all 6 permutations in S_3 .
- 2. Let σ be the permutation of $\mathbb{P}_4 = \{1, 2, 3, 4\}$ given by

$$\left(\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ \sigma(1) & \sigma(2) & \sigma(3) & \sigma(4) \end{array}\right) = \left(\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{array}\right)$$

a) Exhibit σ as a composition of transpositions.

b) Suppose that $\sigma = \tau_1 \circ \tau_2 \circ \cdots \circ \tau_k$, where τ_j , $1 \leq j \leq k$, are k transpositions. What can you say about the positive integer k. Justify your answer!