Extra problems on permutations

1. Use the composition table for \mathcal{S}_{3} on page 152 in the text in order to show that every permutation in \mathcal{S}_{3} can be written as a composition of σ_{4} and σ_{5} (the latter two are transpositions, see Problem 115 in Problem set 6). In other words, show that the set $\left\{\sigma_{4}, \sigma_{5}, \sigma_{4} \circ \sigma_{4}, \sigma_{4} \circ \sigma_{5}, \sigma_{5} \circ \sigma_{4}, \sigma_{4} \circ \sigma_{5} \circ \sigma_{4}\right\}$ consists of all 6 permutations in \mathcal{S}_{3}.
2. Let σ be the permutation of $\mathbb{P}_{4}=\{1,2,3,4\}$ given by

$$
\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\sigma(1) & \sigma(2) & \sigma(3) & \sigma(4)
\end{array}\right)=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 4 & 1 & 2
\end{array}\right)
$$

a) Exhibit σ as a composition of transpositions.
b) Suppose that $\sigma=\tau_{1} \circ \tau_{2} \circ \cdots \circ \tau_{k}$, where $\tau_{j}, 1 \leq j \leq k$, are k transpositions. What can you say about the positive integer k. Justify your answer!

