Name: \qquad

1. (15 points) Let P and Q be statements. Find the truth tables of the following statements and use them to determine if they are equivalent.
i) $P \Rightarrow Q$.
ii) $(\operatorname{NOT} Q) \Rightarrow(\operatorname{NOT} P)$.
2. (10 points) Let the universe of discourse be the real numbers. Prove or give a counter example to the following statement.
$\forall x \exists y\left(x^{2}>y^{2}\right)$.
3. (10 points) Let the universe of discourse be the real numbers. Write the contrapositive of the following statement. If $x<-2$, then $x^{2}>4$.
4. (15 points) Let S and T be sets. Use the contrapositive method to prove the following statement. $((S \cap T=\emptyset)$ AND $(S \cup T=T)) \Rightarrow(S=\emptyset)$.
Suggestion: State the equivalent contrapositive statement and start your argument with: "Assume that $S \neq \emptyset$. Then there exists an element $x \in S$. ..."
5. (10 points) How many positive divisors does 360^{3} has? Justify your answer!
6. (10 points) Let x, y, z, and w be positive integers. Assume that $\operatorname{gcd}(x, z)=1$ and that $y \mid z$. Prove that if $x \mid y w$, then $x \mid w$.
7. (15 points) a) Use the Extended Euclidean Algorithm to find a particular solution of the equation $33 x+18 y=\operatorname{gcd}(33,18)$.
b) Find all the integer solutions of the equation $33 x+18 y=150$. Show all your work.
c) Find all positive integer solutions of the equation $33 x+18 y=150$.
8. (15 points) a) Let x be a positive integer and $x=p_{1}^{d_{1}} p_{2}^{d_{2}} \cdots p_{n}^{d_{n}}$ its prime decomposition. What can you say about the parity (even or odd) of the exponents in the prime decomposition of x^{2} ?
b) Let p be a prime. Prove, by contradiction, that the equation $p x^{2}=y^{2}$ does not have any positive integer solutions x, y. Hint: Use part ??a.
c) (Bonus 5 points) Prove, by contradiction, that if p is prime then \sqrt{p} is not a rational number.
9. (15 points) Let P and Q be statements. Find the truth tables of the following statements and use them to determine if they are equivalent. i) $P \Rightarrow Q$.
ii) $(\operatorname{NOT} Q) \Rightarrow(\operatorname{NOT} P)$.

P	Q	$P \Rightarrow Q$	$\operatorname{Not} t$	Not Q	Nor $Q \Rightarrow$ Not P
T	T	T	F	F	T
T	F	F	F	T	F
F	T	T	T	F	T
F	F	T	T	T	T

The stamens (i) and (ii) are equivalut,

| P | Q | R | $\ldots \ldots \ldots \ldots$ |
| :--- | :--- | :--- | :--- | :--- |
| T | T | T | |
| T | T | F | |
| T | F | T | |
| F | F | F | |
| F | T | F | |
| F | F | T | |
| F | F | F | |

2. (10 points) Let the universe of discourse be the real numbers. Prove or give a
counter example to the following statement.
$\forall x \exists y\left(x^{2}>y^{2}\right)$.

$$
\operatorname{Not}\left(\forall x \nexists y\left(x^{\alpha}>y^{2}\right)\right)
$$

\Leftrightarrow
(*) $子 x \forall y \quad x^{2} \leqslant y^{2}$.
In deed $x=0$ is an exampl.
$5_{0} *$ is true,
So the original statement is False,
3. (10 points) Let the universe of discourse be the real numbers. Write the contrapositive of the following statement.

4. (15 points) Let S and T be sets. Use the contrapositive method to prove the following statement. $\overparen{\sim}$
$((S \cap T=\emptyset)$ AND $(S \cup T=T)) \Rightarrow(S=\emptyset)$.
Sugeepion: State the equivalent contrapositive statement and start your argument
with: "Assume that $S \neq \emptyset$. Then there exists an element $x \in S$.
We will prove the equivalent contrapositive statement:
"If $S \neq \phi \Rightarrow((S \cap T \neq \phi) \circ R(S U T \neq T))^{\prime}$.

$$
\ln
$$

Not Not P OR Not Q
Assume that $S \neq \phi$. Let x be an element in $\$$. If $x \in T$, then x belongs to both S and T, so $x \in S O T$, so $\operatorname{sit} \neq \varnothing$.
If $x \notin T$, then $(x \in S U T$ and $x \notin T)$
so SUT $\neq T_{\text {。 }}$

$$
Q_{0} E_{0} D
$$

5. (10 points) How many positive divisors does 360^{3} has? Justify your answer!

Step 1: Find the prime factorization \& 360^{3}.

$$
\begin{aligned}
& 360=\operatorname{lom}_{2 \cdot 5}^{10} \cdot \underbrace{36}=2^{3} 3^{2} 5^{1} \\
& 360^{3}=\left(2^{3} \cdot 3^{2} \cdot 3^{2} \cdot 5^{2}\right)^{3}=2^{9} \cdot 3^{6} \cdot 5^{3} .
\end{aligned}
$$

$\frac{\text { Step ai: }}{\text { Every }}$ divison of 360^{3} is of the
form

$$
\begin{aligned}
& d=2^{d_{1}} \cdot 3^{d_{2}} \cdot 5^{d_{3}} \text {, where } \\
& 0 \leqslant d_{1} \leqslant 9, \quad 10 \text { possibilities } \\
& 0 \leq d_{2} \leqslant 6 \quad 7 \\
& 0 \leq d_{3} \leqslant 3 \quad 4
\end{aligned}
$$

$$
360^{3} \text { has } \underbrace{10 \cdot 7 \cdot 4}_{280} \text { divisors }
$$

6. (10 points) Let x, y, z, and w be positive integers. Assume that $\operatorname{gcd}(x, z)=1$ and that $y \mid z$. Prove that if $x \mid y w$, then $x \mid w$.
Recall the following proposition from class (and bxtbook).
Proposition: Let x, y, w be integers. If $\operatorname{gcd}(x, y)=1$ and $x \mid y w$, then $x \mid w$.

A ss um that $\operatorname{gcd}(x, z)=1$ and $y \mid z$, We will prove that $\operatorname{gcd}(x, y)=1$. Then we conclude that $x \mid \omega$ using the above proposition,
Let c be a common divisor of x and y. Then $c \mid x$ and $c \mid y$ and we are given that $y \mid z$. So $c \mid r$.
So c is a common divisor of x, z. So $c \leqslant 1$ (because $\operatorname{gcd}(x, z)=1$ by assumption), so $\operatorname{gcd}(x, y)=1$.
QED
7. (15 points) a) Use the Extended Euclidean Algorithm to find a particular solution of the equation $33 x+18 y=\operatorname{gcd}(33,18)$.
b) Find all the integer solutions of the equation $33 x+18 y=150$. Show all your
work. work.
c) Find all positive integer solutions of the equation $33 x+18 y=150$.
a)

$$
33 x_{i}+18 y_{i}=r_{i}
$$

$$
33(-1)+18 \cdot(2)=3=\operatorname{gcd}(33,18)
$$

b) One Solution of
(t) $33 x+18 y=150=50.3$

$$
\text { is }\left(x_{0}, y_{0}\right)=50(-1,2)=(-50,100) \text {. }
$$

The general solution of the homageneoks equation

$$
\begin{aligned}
& 33 x+18 y=0 \\
& \left(x_{n}, y_{n}\right)=\left\{\left(\frac{18}{3} k,-\frac{33}{3} k\right): k \quad\right. \text { in tezel }
\end{aligned}
$$

$$
\left(x_{n}, y_{n}\right) \in\{(6 k,-11 k): \quad k \text { in leges }\}
$$

The general solution of (t) is

$$
(x, y)=\left(x_{0}+x_{n}, y_{0}+y_{n}\right)=(-50+6 k, 100-17 k),
$$

where $k \in \mathbb{Z}$.
c) Find all positive solution of (t).

The in tiger k should satisfy

$$
\begin{aligned}
& -50+6 K>0 \text { AND } 100-11 K>0 \\
& \Longleftrightarrow \\
& 6 k>50 \\
& \Leftrightarrow \\
& 1 \infty>11 K \\
& k>\frac{50}{6}=8 \frac{1}{3} \\
& g \frac{1}{11}=\frac{100}{11}>k \\
& k \geq 9 \\
& g \geqslant k
\end{aligned}
$$

The only solute ion is

$$
(x, y)=(-50+\underbrace{6 \cdot g}_{L_{0}^{6}}, 100-11 \cdot \underbrace{5 g}_{2})
$$

check: $33 \cdot 4+18 \cdot 1 \stackrel{?}{=} 150$
8. (15 points) a) Let x be a positive integer and $x=p_{1}^{d_{1}} p_{2}^{d_{2}} \cdots p_{n}^{d_{n}}$ its prime decorposition. What can you say about the parity (even or odd) of the exponents in the prime decomposition of x^{2} ?
b) Let p be a prime. Prove, by contradiction, that the equation $p x^{2}=y^{2}$ does not
have any positive integer solutions x, y. Hint: Use part 8 a
c) (Bonus 5 points) Prove, by contradiction, that if p is prime then \sqrt{p} is not a rational number.
a) $X^{2}=\left(p_{1} d_{1} \ldots p_{n}^{d_{n}}\right)^{2}=p_{1}^{2 d_{2}} \cdots p_{n}^{2 d n}$

The exponents \& P_{i} are even, for all i,
b) The equation $P X^{2}=y^{2}$ does NOT have any positive integer sol'ms x, y (given that p is a prime). Assume that x, y are in ligers and $p x^{2}=y^{2}$.
The prime ρ appears with even exp mont (passib dy zero) in the prime faclarization of x^{2}, by pasta,
(*) So p appears with old exponent in the prime faclosization of $p x^{2}$

The prime ρ appears with evens exponent in the prime Gacharization of y^{2}, by pat a. Now $y^{2}=p x^{2}$ So p appears with even expprabl
(38) mi the prime factorization of $p x^{2}$
The prime faclarization is unique, so $*$ and $\because *$ are contradicting statements. Hence cen solution x, y does not exist. integers
c) Suppose that \sqrt{p} is a r national number. Ire., there exist integers $x y_{y}$ such that $\sqrt{p}=\frac{y}{x}$

$$
\Leftrightarrow \sqrt{p} \cdot x=y_{0}
$$

so squaring bath si deo, we get

* $P \cdot x^{2}=y^{2}$.

Sa (x, y) is m in teges salution to tho equation. This contsadictos poit
(b) 。

$$
\partial_{r} E D
$$

