1. (20 points) You are given below the matrix \(A \) together with its row reduced echelon form \(B \)

\[
A = \begin{pmatrix}
1 & 1 & 3 & 0 & 1 & 0 \\
0 & 2 & 4 & 2 & 2 & 2 \\
2 & 1 & 4 & -1 & 1 & 0 \\
1 & 1 & 3 & 0 & 1 & 1 \\
\end{pmatrix} \quad B = \begin{pmatrix}
1 & 0 & 1 & -1 & 0 & 0 \\
0 & 1 & 2 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\]

a) Determine the rank of \(A \), \(\dim(\ker(A)) \), and \(\dim(\text{im}(A)) \). Explain how these are determined by the matrix \(B \).

Answer:

- \(\text{rank}(A) = \) number of pivots in \(B \) = 3.
- \(\dim(\ker(A)) = \) number of free variable = 6 − 3 = 3.
- \(\dim(\text{im}(A)) = \text{rank}(A) = 3 \).

b) Find a basis for the kernel \(\ker(A) \) of \(A \).

Answer:

The variables \(x_3, x_4, \) and \(x_5 \) are free. Expressing the basic variables in terms of the free variables, we get that the general solution is:

\[
\begin{pmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5 \\
x_6
\end{pmatrix} = x_3 \begin{pmatrix}
-1 \\
-2 \\
1 \\
0 \\
0 \\
0
\end{pmatrix} + x_4 \begin{pmatrix}
1 \\
1 \\
0 \\
1 \\
0 \\
0
\end{pmatrix} + x_5 \begin{pmatrix}
1 \\
-1 \\
0 \\
0 \\
0 \\
0
\end{pmatrix} = x_3 \vec{v}_1 + x_4 \vec{v}_2 + x_5 \vec{v}_3.
\]

The vectors \(\vec{v}_1, \vec{v}_2, \vec{v}_3 \) are clearly linearly independent, and so a basis of \(\ker(A) \).

c) Find a basis for the image \(\text{im}(A) \) of \(A \).

Answer:

The pivot columns of \(A \) are the first, second, and sixth, so

\[
a_1 = \begin{pmatrix}
1 \\
0 \\
2 \\
1
\end{pmatrix}, \quad a_2 = \begin{pmatrix}
1 \\
2 \\
1
\end{pmatrix}, \quad a_6 = \begin{pmatrix}
0 \\
2 \\
0 \\
1
\end{pmatrix}
\]

are a basis for \(\text{im}(A) \).

d) Does the vector \(b := \begin{pmatrix}
1 \\
0 \\
0 \\
0
\end{pmatrix} \) belong to the image of \(A \)? Use part c to minimize your computations. **Justify** your answer!

Answer:

The vector \(b \) is a linear combination of the basis elements \(a_1, a_2, a_6 \) of \(\text{im}(A) \), if and only if the vector equation \(x_1 a_1 + x_2 a_2 + x_3 a_6 = b \) is consistent. Row reduce the augmented matrix:

\[
(a_1 a_2 a_6 \mid b) = \begin{pmatrix}
1 & 1 & 0 & 1 \\
0 & 2 & 2 & 0 \\
2 & 1 & 0 & 0 \\
1 & 1 & 1 & 0
\end{pmatrix} \sim \cdots \sim \begin{pmatrix}
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & -2 \\
0 & 0 & 0 & 1
\end{pmatrix}.
\]

We get a pivot in the rightmost column, so the equation is inconsistent. Hence, \(b \) does not belong to \(\text{im}(A) \).

2. (12 points) Let \(A \) be a \(4 \times 5 \) matrix with columns \(\vec{a}_1, \ldots, \vec{a}_5 \). We are given that the vector
3. (20 points) Let \(x := \begin{pmatrix} 3 \\ 2 \\ 1 \\ 4 \\ 5 \end{pmatrix} \) belongs to the kernel of \(A \) and the vectors \(v_1 := \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 1 \end{pmatrix} \) and \(v_2 := \begin{pmatrix} 1 \\ 1 \end{pmatrix} \) span the image of \(A \).

a) Express \(a_5 \) as a linear combination of \(a_1, a_2, a_3, a_4 \).

Answer: \(0 = Ax = 3a_1 + 2a_2 + a_3 + 4a_4 + 5a_5 \). Hence, \(a_5 = -\frac{3}{5} a_1 - \frac{2}{5} a_2 - \frac{1}{5} a_3 - \frac{4}{5} a_4 \).

b) Determine \(\dim(\text{im}(A)) \). Justify your answer.

Answer: The vectors \(v_1 \) and \(v_2 \) are linearly independent, since neither one is a scalar multiple of the other, and they span \(\text{im}(A) \), by assumption, hence they constitute a basis of \(\text{im}(A) \), consisting of two elements. Thus, \(\dim(\text{im}(A)) = 2 \).

c) Determine \(\dim(\ker(A)) \). Justify your answer.

Answer: The Rank-Nullity Theorem asserts that \(\dim(\ker(A)) + \dim(\text{im}(A)) = 5 \). Hence, \(\dim(\ker(A)) = 5 - \dim(\text{im}(A)) = 5 - 2 = 3 \).

3. (20 points) Let \(v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \ v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \) and \(\beta := \{v_1, v_2\} \) the basis of \(\mathbb{R}^2 \).

a) Find a vector \(w \) in \(\mathbb{R}^2 \), such that the coordinate vector of \(w \) with respect to the basis \(\beta \) is \([w]_\beta = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \).

Answer: \(w = 2v_1 + 3v_2 = \begin{pmatrix} 2 \\ 5 \end{pmatrix} \).

b) Let \(w_1 := \begin{pmatrix} 2 \\ 2 \end{pmatrix} \) and \(w_2 := \begin{pmatrix} -3 \\ -4 \end{pmatrix} \). Find the coordinate vectors \([w_1]_\beta\) and \([w_2]_\beta\) with respect to the basis \(\beta \).

Answer: \(w_1 = 2v_1 + 0v_2 \), so \([w_1]_\beta = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \).

\(w_2 = x_1 v_1 + x_2 v_2 \), and we find the coefficients \(x_i \) by row reduction:

\[
\begin{pmatrix} v_1 & v_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -3 \\ 1 & 1 & -4 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -3 \\ 0 & 1 & -1 \end{pmatrix}.
\]

So \([w_2]_\beta = \begin{pmatrix} -3 \\ -1 \end{pmatrix} \).

d) Let \(A = \begin{pmatrix} 5 & -3 \\ 6 & -4 \end{pmatrix} \) and \(T : \mathbb{R}^2 \to \mathbb{R}^2 \) the linear transformation given by \(T(x) = Ax \). Note that \(w_1 = T(v_1) \) and \(w_2 = T(v_2) \). Use this information and your work in part 3b to find the matrix \(B \) of \(T \) with respect to the basis \(\beta \) of \(\mathbb{R}^2 \).

Answer: \(B = ([T(v_1)]_\beta[T(v_2)]_\beta) = ([w_1]_\beta[w_2]_\beta) = \begin{pmatrix} 2 & -3 \\ 0 & -1 \end{pmatrix} \).

(e) Let \(\tilde{v}_1, \tilde{v}_2 \), be two linearly independent vectors in \(\mathbb{R}^2 \), and \(\tilde{S} := (\tilde{v}_1 \tilde{v}_2) \) the \(2 \times 2 \) matrix with \(\tilde{v}_j \) as its \(j \)-th column. Let \(\tilde{B} \) be the matrix of the linear transformation \(T \) in part 3c, with respect to the new basis \(\beta := \{\tilde{v}_1, \tilde{v}_2\} \). Express \(\tilde{B} \) in terms of the matrices \(A \) and \(\tilde{S} \).

Answer: \(\tilde{B} = \tilde{S}^{-1}AS \).

e) Let \(S := (v_1v_2) = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \). Express \(\tilde{B} \) in terms of the matrices \(S, \tilde{S}, \) and \(B \).

Answer: \(A = SBS^{-1} \). Substituting the right hand side for \(A \) in the answer to part 3d, we get \(\tilde{B} = \tilde{S}^{-1}SBS^{-1}\tilde{S} \). The above equality shows that \(B \) and \(\tilde{B} \) are similar, since \(S^{-1}S \) is the inverse of \(S^{-1} \tilde{S} \).
4. (18 points) Denote the vector space of 2×2 matrices by $R^{2 \times 2}$. Let $A := \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ and $T : R^{2 \times 2} \to R^{2 \times 2}$ the linear transformation given by $T(M) = AM - MA$.

a) Find the matrix B of T in the basis
$\beta := \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ of $R^{2 \times 2}$.

Answer:
$T\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} - \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} -b & 0 \\ a-d & b \end{pmatrix}$.

$B = \left[\begin{pmatrix} T\left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right) \right]_\beta \begin{pmatrix} T\left(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \right) \right]_\beta \begin{pmatrix} T\left(\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right) \right]_\beta \begin{pmatrix} T\left(\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right) \right]_\beta \right) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ -1 & 0 \end{pmatrix}$.

b) Find a basis for $\ker(B)$. **Answer:** Row reducing B we get the basis: $\left(\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right)$.

c) Find a basis for $\ker(T)$.

Answer: We simply write the elements of $R^{2 \times 2}$, whose coordinate vectors we found in part b. $\left(\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right)$.

d) Find a basis for $\text{im}(B)$.

Answer: $\left(\begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right)$.

e) Find a basis for $\text{im}(T)$.

Answer: We simply write the elements of $R^{2 \times 2}$, whose coordinate vectors we found in part d. $\left(\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \right)$.

5. (10 points) Let V and W be two vector spaces and $T : V \to W$ a linear transformation from V to W. Let p be a positive integer and $\{f_1, \ldots, f_p\}$ a linearly dependent subset of V consisting of p elements. Show the the subset $\{T(f_1), \ldots, T(f_p)\}$ of W is linearly dependent as well. Note: Provide an argument that works for general vector spaces, starting with the definition of linear dependence.

Answer: The set $\{f_1, \ldots, f_p\}$ is linearly dependent, if the equation $0 = c_1 f_1 + \cdots + c_p f_p$, with the scalar coefficients c_i as unknowns, has a solution with at least one non-zero c_i. Choose such a solution and apply T to both sides of the equation to get:

$0 = T(0) = T(c_1 f_1 + \cdots + c_p f_p) = c_1 T(f_1) + \cdots + c_p T(f_p)$,

where in the first and last equalities we used the linearity properties of T. We conclude that the equation $0 = c_1 T(f_1) + \cdots + c_p T(f_p)$ has a solution with at least one non-zero c_i. Hence, the subset $\{T(f_1), \ldots, T(f_p)\}$ of W is linearly dependent.
6. (20 points) Let \(C^\infty(\mathbb{R}) \) be the vector space of functions from \(\mathbb{R} \) to \(\mathbb{R} \), having derivatives of all orders. Denote by \(f \) all orders. Denote by \(T : V \to \mathbb{R}^3 \) be the transformation given by \(T(f) := \begin{pmatrix} f(0) \\ f'(0) \\ f''(0) \end{pmatrix} \).

(a) Show that the transformation \(T \) is linear. In other words, verify the following identities, for any two elements \(f, g \) of \(V \), and for every scalar \(k \).

i. \(T(f + g) = T(f) + T(g) \). \textbf{Answer:} \(T(f + g) = \begin{pmatrix} (f + g)(0) \\ (f + g)'(0) \\ (f + g)''(0) \end{pmatrix} = \begin{pmatrix} f(0) + g(0) \\ f'(0) + g'(0) \\ f''(0) + g''(0) \end{pmatrix} = \begin{pmatrix} f(0) \\ f'(0) \\ f''(0) \end{pmatrix} + \begin{pmatrix} g(0) \\ g'(0) \\ g''(0) \end{pmatrix} = T(f) + T(g) \).

ii. \(T(kf) = kT(f) \). \textbf{Answer:} \(T(kf) = \begin{pmatrix} kf(0) \\ kf'(0) \\ kf''(0) \end{pmatrix} = k \begin{pmatrix} f(0) \\ f'(0) \\ f''(0) \end{pmatrix} = kT(f) \).

(b) Show that the subset \(\{T(f_1), T(f_2), T(f_3)\} \) of \(\mathbb{R}^3 \) is linearly independent. Hint: Recall that the chain rule yields \((e^{2x})' = 2e^{2x}, (e^{2x})'' = 2^2e^{2x} \), and so \(f''(0) = 4 \).

\textbf{Answer:} \(T(f_1) = \begin{pmatrix} e^0 \\ e^0 \\ e^0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, T(f_2) = \begin{pmatrix} e^0 \\ 2e^0 \\ 4e^0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}, T(f_3) = \begin{pmatrix} e^0 \\ 3e^0 \\ 9e^0 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 9 \end{pmatrix} \).

Row reducing, we get:

\((T(f_1)T(f_2)T(f_3)) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{pmatrix} \sim \cdots \sim \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix} \).

We get a pivot in every column, so the columns \(T(f_1), T(f_2), T(f_3) \) are linearly independent, and a pivot in every row, so \(T(f_1), T(f_2), T(f_3) \) span the whole of \(\mathbb{R}^3 \).

(c) Show that \(\text{im}(T) \) is the whole of \(\mathbb{R}^3 \).

\textbf{Answer:} \(\text{im}(T) = \text{span}\{T(f_1), T(f_2), T(f_3)\} \), and the latter was shown to be the whole of \(\mathbb{R}^3 \) in the previous part.

(d) Show the the subset \(\{e^x, e^{2x}, e^{3x}\} \) of \(V \) is linearly independent. Hint: Use part 6b and question 5.

\textbf{Answer:} We argue as in question 5. Suppose \(c_1e^x + c_2e^{2x} + c_3e^{3x} = 0 \). Applying \(T \) to both sides we get

\[c_1T(e^x) + c_2T(e^{2x}) + c_3T(e^{3x}) = 0. \]

The vectors \(T(e^x), T(e^{2x}), T(e^{3x}) \) in \(\mathbb{R}^3 \) are linearly independent, by part 6b. Hence, \(c_1 = c_2 = c_3 = 0 \). Hence, the subset \(\{e^x, e^{2x}, e^{3x}\} \) of \(V \) is linearly independent.

(e) Show that \(T : V \to \mathbb{R}^3 \) is an isomorphism.

\textbf{Answer:} It suffices to show that \(\ker(T) = \{0\} \) and \(\text{im}(T) = \mathbb{R}^3 \). The equality \(\ker(T) = \mathbb{R}^3 \) was shown in part 6c. The Rank-Nullity-Theorem yields the equality \(\dim(\ker(T)) + \dim(\text{im}(T)) = \dim(V) \). The set \(\{e^x, e^{2x}, e^{3x}\} \) is linearly independent, by part 6d, and spans \(V \), by definition of \(V \), and is thus a basis for \(V \). The vector space \(V \) is three-dimensional, having a basis consisting of three elements. Hence, \(\dim(\ker(T)) = \dim(V) - \dim(\text{im}(T)) = 3 - 3 = 0 \). Thus, \(\ker(T) = \{0\} \).