1. (20 points) Let \(\vec{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \) and let \(\vec{v}_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} \). Let \(V \) be the subspace spanned by \(\vec{v}_1 \) and \(\vec{v}_2 \).

a. (5 pts) Prove that \(\vec{v}_1 \) is not perpendicular to \(\vec{v}_2 \).

b. (8 pts) Find an orthonormal basis for \(V \).

c. (7 pts) What is the matrix for orthogonal projection onto \(V \)?

2. (17 points) Find the quadratic polynomial \(p(t) = a + bt + ct^2 \) that best (in the least squares sense) fits the following data.

<table>
<thead>
<tr>
<th>(t)</th>
<th>(-1)</th>
<th>(0)</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>(1)</td>
<td>(1.5)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
</tbody>
</table>

3. (28 points) Let \(V \subseteq C^\infty \) be subspace spanned by \(\{e^x, xe^x, x^2e^x\} \). Let \(B \) be the ordered basis \(B = (e^x, xe^x, x^2e^x) \).

a. (4 pts) What is the dimension of \(V \)?

b. (8 pts) Let \(D : V \rightarrow V \) be the linear transformation given by \(D(f) = f' \). Express \(D \) as a matrix with respect to the basis \(B \). i.e. Compute \(\text{Mat}_B^B(D) \).

c. (8 pts) Let \(A = \text{Mat}_B^B(D) \). You can check that:

\[A^3 - 3A^2 + 3A - 1 = 0. \]

Consider the function \(f(x) = 2e^x - 13xe^x + \sqrt{2}x^2e^x \). What does the above tell you about \(f''' - 3f'' + 3f' - f \)?

d. (8 pts) Suppose you want to find functions \(u \) such that

\[u'''(x) - 3u''(x) + 3u'(x) - u(x) = x. \]

Verify that \(u(x) = -x - 3 \) is a solution. Find another one.

4. (15 points) Find a basis for the space perpendicular to the solutions of

\[x_1 + 3x_2 - x_3 + x_4 = 0 \]
\[-2x_1 + 2x_2 + x_3 + x_4 = 0\]

5. (20 points) Let \(P_5 \) denote the vector space of polynomials of degree at most 5. Let \(S \subseteq P_5 \) denote the subset of polynomials \(p \) such that

\[p''(2) = p(4). \]

Show that \(S \) is a subspace of \(P_5 \) and compute a basis of \(S \).
Before test 2:

1. Make sure you can define the following words:

 (a) linear transformation
 (b) subspace
 (c) linearly independent
 (d) rank
 (e) kernel
 (f) image
 (g) span
 (h) dimension
 (i) similar matrices
 (j) vector space
 (k) transpose of a matrix
 (l) orthogonal matrix
 (m) symmetric matrix
 (n) skew-symmetric matrix
 (o) orthonormal basis

2. Make sure you can do Gaussian Elimination and Gram-Schmidt, and you know what each is good for.

3. Make sure you can solve a linear system.

4. Make sure you can state the Rank-Nullity Theorem and fully appreciate all of its consequences.