1. Write the system of equations as a matrix equation and find all solutions using Gauss elimination:

\[\begin{align*}
 x + 2y + 4z &= 0, \\
 -x + 3y + z &= -5, \\
 2x + y + 5z &= 3.
\end{align*} \]

2. What does it mean for a vector to be in the kernal of a matrix \(A \). Let \(A \) be the matrix

\[
\begin{pmatrix}
 1 & 2 & 5 \\
 -2 & 0 & -2 \\
 3 & -1 & 1
\end{pmatrix},
\]

Is \[
\begin{pmatrix}
 1 \\
 2 \\
 1
\end{pmatrix}
\]
an element of the kernal of \(A \)? Why?

3. Define what it means for a set \(s \) to be a basis of a subspace \(V \subset \mathbb{R}^n \). Let

\[
A = \begin{pmatrix}
 1 & 2 & 3 & -1 \\
 -1 & 0 & 1 & -1 \\
 -1 & 4 & 3 & -5
\end{pmatrix}.
\]

Give a set of vectors that span \(\text{ker}(A) \) and that are independent.

4. Let \(A \) be a \(n \) by \(m \) matrix, so \(A \) gives a function from \(\mathbb{R}^m \) to \(\mathbb{R}^n \). Let \(x_1, x_2 \in \mathbb{R}^m \). Assume that \(A(x_1) = A(x_2) \). Show that \(x_1 - x_2 \) is in the kernal of \(A \).

5. Let \(u = (u_1, u_2) \) be a vector of length 1. Let \(A \) be a matrix whose effect on the plane is to reflect about the line through the origin and \(u \). Let \(v = (-u_2, u_1) \). In terms of \(u \) and \(v \) what is \(A(u) \)? what is \(A(v) \)? Write \(e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \) as a linear combination of \(u \) and \(v \). Use the answer to the previous question to compute \(A(e_1) \).

6. Solve the equation

\[
\begin{pmatrix}
 1 & 0 & -1 \\
 0 & 1 & 2 \\
 2 & 1 & -1
\end{pmatrix} \begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{pmatrix} = \begin{pmatrix}
 1 \\
 0 \\
 -1
\end{pmatrix},
\]

for \(x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \) by find the inverse of the given matrix.

7. Compute the product \(AB \) of the two matrices \(A, B \) given below, if possible. If it is not possible say why it is not possible.

\[
A = \begin{pmatrix}
 1 & 2 \\
 -1 & 0 \\
 3 & -2
\end{pmatrix},
\]

\[
B = \begin{pmatrix}
 -1 & 0 \\
 4 & 8
\end{pmatrix}
\]

The product matrix \(AB \) gives a function. What is the domain and what is the range of that function?
8. Find a basis of the subspace of \mathbb{R}^3 defined by $3x - y + z = 0$. What is the dimension of this subspace?

9. Consider the matrix

$$A = \begin{pmatrix}
1 & 0 & 2 \\
-1 & 2 & 0 \\
1 & 1 & 3 \\
-2 & 1 & -3
\end{pmatrix}$$

Let $b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{pmatrix}$. Find conditions on b so that the equation $Ax = b$ can be solved. Find a basis of the image of A.

10. Let V, W be subspaces of \mathbb{R}^n. Assume that $V \subset W$ and that the dimension of V is equal to the dimension of W. Show $V = W$.