
MATH 132H SPRING 2004 EXAM 2 SOLUTION

1. (16 points) For each of the following improper integrals, determine if it converges
or diverges. If convergent, evaluate the integral. Otherwise, explain why it
diverges.

a) The integral is divergent. Substitute u = 1 + x2 to get:
∫

∞

0

x

1 + x2
dx =

1

2

∫

∞

1

du

u
=

1

2
lim
t→∞

∫ t

1

du

u
=

1

2
lim
t→∞

[ln(t)− ln(1)] = ∞.

b) Using integration by parts, with u = ln(x) and dv = x−2dx, we get that the
integral is convergent.
∫

∞

1

ln(x)

x2
dx = lim

t→∞

{

[

− ln(x)

x

]t

1

−
∫ t

1

−x−2dx

}

=

lim
t→∞

{[

− ln(t)

t
+ ln(1)

]

−
[

1

t
− 1

]}

L′Hopital
= [0 + 0]− [0− 1] = 1.

2. (a) (12 points) Use the trigonometric substitution x = 1
3
sin(θ), dx = 1

3
cos(θ)dθ:

I :=

∫ √
1− 9x2dx =

∫

√

1− 9

9
sin2(θ)

[

1

3
cos(θ)

]

dθ =
1

3

∫

cos2(θ)dθ =

1

3

∫

1 + cos(2θ)

2
dθ =

1

6
[θ +

sin(2θ)

2
]dθ + C =

Proceed using the identities sin(2θ) = 2 sin(θ) cos(θ), sin(θ) = 3x, and
cos(θ) =

√
1− 9x2.

I =
1

6
[arcsin(3x) + 3x

√
1− 9x2] + C =

arcsin(3x)

6
+

x
√

1− 9x2

2
+ C

(b) (3 points) The area enclosed by the ellipse 9x2 + y2 = 1.

Answer: Area = 2

∫ 1/3

−1/3

√
1− 9x2dx

part 2a
=

π

3
.

3. (8 points)

∫

1

x2 − x
dx =

∫
[−1

x
+

1

x− 1

]

dx = − ln |x|+ ln |x− 1|+ C

4. (30 points) Determine whether each of the following series is absolutely conver-
gent, conditionally convergent, or divergent. Show all your work! Explain, in
particular, which test you used and why the conditions of the test are satisfied.

a) (8 points) Use the Ratio Test for absolute convergence of
∞

∑

n=1

n

(

2

3

)n

.

lim
n→∞

an+1

an
= lim

n→∞

(n + 1)(2/3)n+1

n(2/3)n
= (2/3) lim

n→∞

n + 1

n
= 2/3 < 1.

Thus, the series converges absolutely.

b) (7 points) The series

∞
∑

n=1

(−1)n n2 − 4n

2n2 + 7n + 5
diverges by the n-term test:

lim
n→∞

∣

∣

∣

∣

(−1)n n2 − 4n

2n2 + 7n + 5

∣

∣

∣

∣

=
1

2
6= 0.



c) (8 points) The series
∞

∑

n=1

(−1)n 5n

n2 + 2n
is conditionally convergent. We show

this in two steps:

Step I: The series of absolute values

∞
∑

n=1

5n

n2 + 2n
diverges, by the limit com-

parison test with the divergent harmonic series:

lim
n→∞

[

5n

n2 + 2n

]

/

[

1

n

]

= lim
n→∞

5n

n + 2
= 5 > 0.

Step II: The three conditions of the Alternation Series Theorem are satisfied:
i) The sign is alternating,
ii) limn→∞

5n
n2+2n

= limn→∞
5

n+2
= 0, and

iii) The sequence
{

5
n+2

}

is decreasing.
Thus, the series is conditionally convergent.

d) (7 points) The function 1
x[ln(x)]2

is positive and decreasing for x ≥ 2. Thus, the

series

∞
∑

n=2

1

n[ln(n)]2
converges, by the integral test, since the following improper

integral is convergent:
∫

∞

2

1

x[ln(x)]2
dx

u=ln(x)
=

∫

∞

u=ln(2)

du

u2
= lim

t→∞

∫ t

ln(2)

du

u2
= lim

t→∞

[

−1

u

]t

ln(2)

=
1

ln(2)
.

5. (15 points) a) A power series representation for the function

x

1 + 3x4
= x · 1

1− (−3x4)
= x ·

∞
∑

n=0

(−3x4)n =
∞

∑

n=0

(−3)nx4n+1.

b) The interval of convergence of the power series in part a) is equal to that of
the geometric series

∑

∞

n=0(−3x4)n, which is convergent if and only if |−3x4| < 1.

Thus, the interval of convergence is −
(

1
3

)1/4
< x <

(

1
3

)1/4
.

c)

∫

x

1 + 3x4
dx =

∫

[

∞
∑

n=0

(−3)nx4n+1

]

dx =

∞
∑

n=0

∫

(−3)nx4n+1dx =

∞
∑

n=0

(−3)n x4n+2

4n + 2
+ C.

2



6. (16 points) a) Use the formula for the coefficient of the Taylor series, in order
to determine the Taylor series for f(x) = sin(x) centered at a = 0 (i.e., the
Maclaurin series). Show all your work! Credit will not be given for an answer
without a justification.

The calculation of the Taylor series sin(x) =
∞

∑

n=0

(−1)n x2n+1

(2n + 1)!
is carried out

in Section 11.10 Example 4 page 765 in the text.

b) Recall Taylor’s Remainder Inequality: If
∣

∣f (n+1)(x)
∣

∣ ≤ M , for |x− a| ≤ d,
then the remainder Rn(x), of the Taylor series centered at x = a, satisfies the
inequality

|Rn(x)| ≤ M

(n + 1)!
|x− a|n+1, for |x− a| ≤ d.

Use Taylor’s remainder inequality to determine the minimal degree n, of the
Taylor polynomial Tn(x) centered at 0, needed to approximate sin(0.1) to within
5 decimal digits.

Answer: The upper bound M could be chosen as 1, since
∣

∣sin(n+1)(x)
∣

∣ is equal
to |sin(x)| or |cos(x)| and both are bounded by 1. Taylor’s inequality yields

|sin(x)− Tn(x)| = |Rn(x)| <
|x|n+1

(n + 1)!

|sin(0.1)− Tn(0.1)| = |Rn(0.1)| <
(0.1)n+1

(n + 1)!
(1)

In order to assure, that the error |Rn(0.1)| is less than 0.00001, we need to choose
n, so that the right hand side of the inequality (1) is less than 0.00001 = (10)−5.
For n = 1 the right hand side of equation (1) is 1

200
, for n = 2 it is 1

6000
, and for

n = 3 it is 1
240000

. Thus, n = 3.

Note, that T3(x) = x− x3

3!
, T3(0.1) = 0.1− 1

6000
, and

|sin(0.1)− T3(0.1)| = |R3(0.1)| < 1

240000
.
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