Math 132H-SPRING 2006 Solution to EXAM 1

1. (8) Rewrite $\frac{1+\sqrt{x}}{3 x}=\frac{1}{3}\left(x^{-1}+x^{-1 / 2}\right)$ to obtain:

$$
\int 5 e^{2 x}-\frac{1+\sqrt{x}}{3 x}+\frac{3}{1+x^{2}} d x=\frac{5}{2} e^{2 x}-\frac{1}{3} \ln |x|-\frac{2}{3} x^{1 / 2}+3 \arctan (x)+C .
$$

2. (8) Use the substitution $u=\cos (x)$ and the identity $\sin ^{4}(x)=\left(1-\cos ^{2}(x)\right)^{2}$ to obtain: $\int \sin ^{5}(x) \cos ^{4}(x) d x=\frac{(\cos (x))^{9}}{9}-\frac{2}{7}(\cos (x))^{7}+\frac{(\cos (x))^{5}}{5}+C$
3. (8) Use substitution $u=x^{2}$ to obtain: $\int x^{3} \sin \left(x^{2}\right) d x=\frac{1}{2} \int u \sin (u) d u$.

Next, use integration by parts to obtain: $\frac{1}{2} \int u \sin (u) d u=\frac{1}{2}\left\{\sin \left(x^{2}\right)-x^{2} \cos \left(x^{2}\right)\right\}+C$.
4 (15)
a) $\frac{\partial}{\partial x} \int_{1}^{x^{2}} \sin \left(t+t^{2}\right) d t=\sin \left(x^{2}+x^{4}\right) \cdot 2 x$,
by the Chain Rule (with $F(u)=\int_{1}^{u} \sin \left(t+t^{2}\right) d t$ and $u(x)=x^{2}$).
b) $\frac{\partial}{\partial x} \int_{x}^{10} \ln \left(1+t^{2}\right) d t=-\frac{\partial}{\partial x} \int_{10}^{x} \ln \left(1+t^{2}\right) d t=-\ln \left(1+x^{2}\right)$.
c) The definite integral $\int_{0}^{\pi} \sin (x) d x$ is constant, so its derivative vanishes.

5 (15) a) Sketch the region to the right of the y-axis bounded by the y-axis, the curve $y=\frac{12}{2+x^{2}}$, and the curve $y=x^{2}-2$.
The two curves meet at $(2,2)$.
b) Use the Cylindral-shells method to find the volume of the solid obtained by revolving about the y-axis the region in part a).
Answer: The radius is x, the height of the cylindral shell is $\frac{12}{2+x^{2}}-\left(x^{2}-2\right)$, so the volume is given by:

$$
\text { Vol }=\int_{0}^{2} 2 \pi x\left[\frac{12}{2+x^{2}}-\left(x^{2}-2\right)\right] d x=2 \pi\left[6 \ln \left(2+x^{2}\right)-\frac{x^{4}}{4}+x^{2}\right]_{0}^{2}=12 \pi \ln (3) .
$$

6 a) (9) Approximate the integral $\int_{0}^{1} e^{\left(x^{2}\right)} d x$ by a Riemann sum that uses 5 equallength sub-intervals and left-hand endpoints as sample points. (Show the individual terms of the Riemann sum before you calculate the value of the sum).
Answer: $0.2\left[e^{0}+e^{(.2)^{2}}+e^{(.4)^{2}}+e^{(.6)^{2}}+e^{(.8)^{2}}\right] \approx 1.3088$
b) (6) Interpret the limit $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{1-\left(\frac{i}{n}\right)^{2}} \cdot\left(\frac{1}{n}\right)$ as the area of a region. Justify this interpretation! Graph this region. Use your interpretation to evaluate the limit.
Answer: The equality $\sum_{i=1}^{n} \sqrt{1-\left(\frac{i}{n}\right)^{2}} \cdot\left(\frac{1}{n}\right)=\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x$ holds, if we take $f(x)=$ $\sqrt{1-x^{2}}$, sample points $x_{i}^{*}=\frac{i}{n}$, and $\Delta x=\frac{1}{n}$. The equality $\Delta x=\frac{1}{n}$ means that the endpoints a, b of the interval satisfy $b-a=n \Delta x=1$. The sample points would be
the right end-points $x_{i}=a+i \cdot \frac{\Delta x}{n}$, if $a=0$. Thus, the Riemann sums approximate and converge to $\int_{0}^{1} \sqrt{1-x^{2}} d x$. The integral is represented geometrically by the area of one quarter of the unit circle. It is hence equal to $\frac{\pi}{4}$.

7 The graph of the curve $x=\left(y^{3}+5 y^{2}+y\right)^{\frac{1}{3}}, y>0$, is revolved about the y-axis to form the outer surface of a water container. Water is being poured in at a constant rate of 10 centimeters cubed per second. Assume the x and y units are in centimeters.
a) (9) Use the disk (washer) method to set-up an integral for the volume $V(h)$ of the water in the container, when the water level reaches the horizontal line $y=h_{\mathrm{cm}}$ (for some constant height h). Do NOT evaluate the integral.
Answer: $\quad V(h)=\int_{0}^{h} \pi\left(y^{3}+5 y^{2}+y\right)^{2 / 3} d y$
b) (6) Use the fact that $\frac{\partial V(h(t))}{\partial t}=10 \mathrm{~cm}^{3} / \mathrm{sec}$, the Fundamental Theorem of Calculus, and the Chain Rule, to show that the rate of change $\frac{\partial h}{\partial t}$, of the height $h(t)$ of the water in the container with respect to time, is equal to 10 divided by the horizontal-surface-area of the water

$$
\begin{equation*}
\frac{\partial h}{\partial t}=\frac{10}{\pi\left(h^{3}+5 h^{2}+h\right)^{2 / 3}} \mathrm{~cm} / \mathrm{sec} . \tag{1}
\end{equation*}
$$

Answer: $10=\frac{\partial V(h(t))}{\partial t} \quad$ Chain Rule $\quad \frac{\partial V(h)}{\partial h} \cdot \frac{\partial h}{\partial t}$.
The Fundamental Theorem of Calculus and part a) yield:
$\frac{\partial V(h)}{\partial h}=\pi\left(h^{3}+5 h^{2}+h\right)^{2 / 3}$.
Substitute the latter equation in the former and solve for $\frac{\partial h}{\partial t}$ to get equation (1).
8 (16) A ball is thrown upward from a tower window, 200 feet above the ground, with initial velocity $v_{0}=48$ feet per second. Its acceleration, t seconds afterwards, is $v^{\prime}(t)=-32 \mathrm{ft} / \mathrm{sec}^{2}$.
a) The velocity $v(t)$ of the ball t seconds after it is thrown, but before it hits the ground, is $v(t)=-32 t+C$, and the constant C is 48 , since $v(0)=48$.
b) The height $h(t)$ of the ball above the ground t seconds after it is thrown is

$$
h(t)=200+\int_{0}^{t} v(t) d t=200+\int_{0}^{t} 48-32 t d t=200+48 t-16 t^{2} .
$$

c) The total distance traveled by the ball during the time interval $0 \leq t \leq 2$ seconds is $\int_{0}^{2}|v(t)| d t$. The velocity is positive for $0<t<\frac{3}{2}$ and negative for $\frac{3}{2}<t<2$. Thus, the total distance traveled is

$$
\int_{0}^{3 / 2} 48-32 t d t+\int_{3 / 2}^{2}-48+32 t d t=36+4=40
$$

