MATH 132H–SPRING 2006 FINAL EXAM

Di vergent

1. (14 points) Determine whether each of the following series is absolutely convergent, conditionally convergent, or divergent. Show all your work! Explain, in particular, which test you used and why the conditions of the test are satisfied.

7 points a) $\sum_{n=1}^{\infty} (-1)^n \frac{\sqrt{n-1}}{2n^2 + \sqrt{n}}$ $|a_m| < \frac{\sqrt{m}}{2m^2} < (\frac{1}{m^3/2})$ The series $\frac{2}{2} \stackrel{a_m}{\stackrel{1}{=}} \frac{a_m}{m^{3/2}}$ is convergent, by the p-tert. b_m Absolutely convergent, by the comparison tert. Contract: 3 pto, In cuir 12 257 1 and 7 points b) $\sum_{n=2}^{\infty} \frac{1}{n \ln(n)}$ OX) $\int \frac{1}{u} du = \lim_{t \to \infty} \ln(t) - \ln(\ln(a)) = +\infty$ $\int \frac{1}{X \ln (x)} dx = \frac{1}{x} \ln (x)$ $u = \ln (x)$ $du = \frac{1}{x} dx$

2. (18 points) Compute the following integrals algebraically. Show all your work!
(a
$$\rho^{+} \overline{\rho}$$
 a) $\int_{0}^{\pi/2} \sin^{3}(\theta) \cos^{2}(\theta) d\theta = \int_{0}^{\pi} \int_{0}^{1} C_{0} \Delta^{3}(\theta) - c_{0} \Delta^{4}(\theta) \int_{0}^{1} (-d(s)\theta) = \int_{0}^{1} U = c_{0}(\theta)$
 $= \int_{0}^{1} U^{2} - U^{4} dU = \int_{0}^{1} U^{2} - U^{4} du = \int_{0}^{1} \frac{U^{3}}{3} - \frac{U^{5}}{5} \int_{0}^{1} = \frac{1}{3} - \frac{1}{5} = \frac{2}{15} = 1.33$
 $f = (s, 0, 0)$
(b) $\int_{0}^{1} x \sin(2x) dx = X \cdot (-\frac{1}{2} \cos(\theta x)) - (-\frac{1}{2} \cos(\theta x) dx) = \int_{0}^{1} \frac{1}{2} (-\frac{1}{2} \cos(\theta x) dx) = \int_{0}^{1} \frac{$

MATH 132H-SPRING 2006 FINAL EXAM

$$\begin{split} \mathcal{G} p^{\frac{1}{2}} & c) \int \frac{x^2 + 4x + 1}{x^2 + 4} dx = \int 1 + \frac{4x - 3}{x^2 + 4} dx = \int 1 dx + 2 \left(\frac{\partial x}{\partial x} dx + 3 \right) \left(\frac{dx}{x^2 + 4} dx + 3 \right) \left(\frac{dx}{x^2 + 4}$$

 $I = X + 2 \ln (X + H) - 3 \operatorname{anchan} (X) + \zeta$ $G = \int_{X} \int_{X} \operatorname{Energy} (X + H) = \int_{X} \operatorname{anchan} (X) + \zeta$

3. (10 points) Find the volume of the infinite solid of revolution obtained by rotating the curve $y = \frac{1}{x}$ around the x-axis, over the interval $[1, \infty)$.

i no ti

MATH 132H–SPRING 2006 FINAL EXAM

Interval; (-00,00)

·2 115

MATH 132H-SPRING 2006

FINAL EXAM

page 6

 $CA(\theta) = \frac{1}{2}$

白ニナモナンの丁

(し,) = (ま,ち), (ま,う)

5 \$

3 pto

b) Set up a definite integral representing the area of the region that lies *inside* $r = 3\cos(\theta)$ and *outside* $r = 2 - \cos(\theta)$.

 $\begin{bmatrix} \Pi_{1}(\theta)^{2} - \Pi_{2}(\theta)^{2} \end{bmatrix} d\theta = \frac{1}{2} \int_{3}^{3} \left[(3 \cos(\theta))^{2} - (2 - \cos(\theta))^{2} \right] d\theta$ $= \frac{1}{3} \int_{3}^{3} \left[(3 \cos(\theta))^{2} - (2 - \cos(\theta))^{2} \right] d\theta$ $= \frac{1}{3} \int_{3}^{3} \left[(3 \cos^{2}(\theta))^{2} - (2 - \cos^{2}(\theta))^{2} \right] d\theta$

c) Evaluate the integral in part 5b algebraically, showing all your work.

 $c_{02}^{2}(\theta) + Hc_{0}(\theta) - 4d\theta = -\frac{4}{2} [c_{00}(\theta) + c_{00}(\theta)]d\theta$ 1+ 48(20) + 4 62261 $\left[Sm(\theta) + \frac{Sm(2\theta)}{2} \right]^{\frac{3}{2}} = \lambda \left[\left(\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} \right) - \left(-\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} \right) \right]$

6. (14 points) A basketball is thrown from the ground. Its position, t seconds after it was thrown, is given by the parametrized curve

$$x(t) = 40t$$
 and $y(t) = 40t - 10t^2$.

a) Find the equation of the tangent line at t = 0 and use it to determine the angle at which the basketball is thrown?

b) What is the maximal height reached by the basketball?

0= 51= HO-20t y(2) = 80-40=40.

3 pto

6 pt

c) Express as a definite integral the distance traveled by the basketball until it hits the ground. Do NOT evaluate the integral. Hint: Consider the length of the parametrized curve.

the ground: $0 = y(t) = H0 t - 10t^2 = t(H0 - 10t)$ $t=0, \quad [t=4]$ hito $+(37)^{2}dt = 5\sqrt{40^{2}+(40-20t)^{2}}dt$

MATH 132H-SPRING 2006 pto

0

FINAL EXAM

7. (1) points) a) Use the formula for the coefficient of the Taylor series, in order to determine the Taylor series for $f(x) = \ln(x)$ centered at a = 1. Show all your work! Credit will not be given for an answer without a justification.

M	B (M) (X)	B ^(m) (1)/M!	$\mathcal{G}(\mathbf{X}) =$	$2 \frac{\beta^{(m)}(1)}{M} (X-1)$	M	
\bigcirc	ln(X)	Q	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	3	M-L M
1	1 ×	1	ln(x) = 0	$(x-1) - \frac{1}{2}(x-1) + (x-1)$	1)+	(-1) (X-1)
2	(1) x -2	-1/2		× m-1		M
3	2 x-3	2/31=13		$\sum (-1)^m \sum (-1)^m \sum$	-1) ^M	
4	-2.38-4	- 1		///-/		
n	(m-1) [(-1) X	n(-1) ^{m-1}				in 1
Ghi	ing! Gu	n A dis	Cappuid IF a=	1:(5)(5)(3)		1 at x=1

4 pto b) Use the identity $\frac{1}{x} = \frac{1}{1+(x-1)}$ and the formula for the sum of a geometric series, in order to find the Taylor series for $f(x) = \frac{1}{x}$ centered at a = 1. $\sum_{k=1}^{\infty} (-1)^{k} (X-1)^{k}$

M=0

MATH 132H-SPRING 2006 pto

3

FINAL EXAM

c) Explain how your answers to parts 7a) and 7b) should be related and check Differentiation of term by Torm this relation.

yields; $7b = \frac{1}{2} 7a$

d) Recall Taylor's Remainder Inequality: If $|f^{(n+1)}(x)| \leq M$, for $a \leq x \leq a+d$, then the remainder $R_n(x)$, of the Taylor series centered at x = a, satisfies the inequality

$$|R_n(x)| \le \frac{M}{(n+1)!} |x-a|^{n+1}$$
, for $a \le x \le a+d$

(and similarly for the interval $a-d \leq x \leq a$). Use Taylor's remainder inequality to determine the minimal degree n, of the Taylor polynomial $T_n(x)$ centered at a = 1, needed to approximate $\ln(1.4)$ to within 3 decimal digits. Justify your

$$\frac{\left| \begin{pmatrix} m \\ m \end{pmatrix} \right|^{answer!}}{\left| \left| \begin{pmatrix} m-1 \\ m \end{pmatrix} \right|^{a}} \left| \begin{pmatrix} m-1 \\ m \end{pmatrix} \right|^{a} \left| \begin{pmatrix} m-1$$