Math 132 Final Exam

Spring 2003
Your name \qquad
ID number \qquad
Your section \qquad

Note:

- No notes, no books.
- It is not sufficient to simply write down the answers. You must explain how you arrive at your answers.
- You have TWO HOURS.

$$
\sin ^{2} \theta=\frac{1-\cos 2 \theta}{2}, \cos ^{2} \theta=\frac{1+\cos 2 \theta}{2}
$$

		GRADE	
$\# \# 1$	(a)	(b)	
	(c)		
$\# 2$	(a)	(b)	
	(c)		
$\# 3$		$(\mathrm{~b})$	
$\# 4$	(a)		
	(c)		
$\# 5$	(a)		
$\# 6$			
TOTAL			

\#1. Compute the following integrals algebraically. SHOW YOUR WORK!
(a) [5 points] $\int_{0}^{\pi / 4} \sin ^{3} \theta \cos ^{3} \theta d \theta$
(b) $[5$ points $] \int_{0}^{1} \sqrt{2-x^{2}} d x$
(c) [5 points] $\int t e^{2 t} d t$
\#2. Determine whether each of the following is convergent or divergent. EXPLAIN YOUR REASONING.
(a) [5 points] $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2^{n}+1}$
(b) $[5$ points $] \sum_{n=1}^{\infty} \frac{\sqrt{n}}{(n+2)(n+3)}$
(c) $[5$ points $] \sum_{n=1}^{\infty} \frac{(-1)^{n}}{2^{1 / n}}$
\#3. [10 points] Find the first three terms of the Taylor series for the function $f(x)=$ $x \ln \left(x^{2}+1\right)$ with center $\boldsymbol{a}=\mathbf{1}$.
\#4. Consider the power series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n}}{(n+1)!}$.
[5 points] (a) Determine the radius of convergence of this power series.
[5 points] (b) Show that this power series converges for $x=1 / 3$.
[5 points] (c) How many terms do you need to take to estimate the infinite series in Part (b) above to within 0.001? SHOW YOUR WORK!
\#5. [5 points] Sketch the region in the first quadrant that lies inside the polar graph $r=\cos 2 \theta$ and outside the polar graph $r=1 / 2$. Determine all points of intersections.
[5 points] Determine the area of this region.
\#6. [10 points] Find the volume of the solid obtained by rotating the curve $y=\ln x$ for $1 \leq x \leq 2$ about the x-axis. (Hint: use integration by parts)

