Math 132 Midterm \#2

Spring 2003
Your name \qquad
ID number \qquad
Your section \qquad

Note:

- No notes, no books.
- It is not sufficient to simply write down the answers. You must explain how you arrive at your answers.
- You have 90 minutes.

$$
\sin ^{2} \theta=\frac{1-\cos 2 \theta}{2}, \cos ^{2} \theta=\frac{1+\cos 2 \theta}{2}
$$

		GRADE
$\# 1$	(a)	(b)
$\# 2$	(a)	(b)
	(c)	(d)
$\# 3$		
	(a)	(b)
	(c)	(d)
Total		

\#1. Consider the parametric curve given by

$$
x=t^{2}-1, \quad y=t\left(t^{2}-1\right) .
$$

[10 points] (a) Determine all points (x, y) at which the parametric curve has vertical tangent.
[10 points] (b) Determine the equation of the tangent line at the point $(x, y)=(3,6)$ of this parametric curve.
\#2. [10 points] For each of the following integrals, determine whether it is convergent or divergent. Evaluate algebraically those that are convergent. Show your work!
(a) [5 points] $\int_{0}^{1} \frac{d x}{x \ln x}$
(b) [5 points] $\int_{0}^{\pi / 3} \tan ^{3} x \sec x d x$
(c) $[5$ points $] \int_{-2}^{2} \frac{d x}{(x-1)^{2}}$
(d) $[5$ points $] \int_{0}^{\infty} x e^{-x} d x$
\#3. [10 points] Determine the area of the region that lies inside $r=3 \cos \theta$ and outside $r=2-\cos \theta$.
\#4. For each of the following infinite series, determine whether or not it is convergent or not. For the ones that do converge, compute its sum. Explaination your reasoning.
(a) [5 points] $\sum_{n=1}^{\infty} \frac{7 n^{2}+4 n+1}{6 n^{2}-5 n+10}$
(b)[5 points] $\sum_{n=1}^{\infty} \frac{3^{2 n}}{7^{n+1}}$
(c) [5 points] $\sum_{n=1}^{\infty}(-1)^{n} \frac{3^{n+2}}{4^{n-3}}$
(d) $[5$ points $] \sum_{n=1}^{\infty}\left(\frac{e}{n}-\frac{1}{e^{n}}\right)$

