Math 132 Midterm \#1

Feb 27, 2003
\qquad
Your name

Your section

Note:

- You may use a calculator, but no books or notes.
- It is not sufficient to simply write down the answers. You must explain how you arrive at your answers.
- When evaluating integrals you MUST provide all algebraic steps; numerical answer along will NOT earn you full credit.
- You have 90 MINUTES.

	FOR GRADERS' USE ONLY			
$\# 1$	(a)	(b)	(c)	
$\# 2$				
$\# 3$		(a)	(b)	
$\# 4$		(a)	(b)	
$\# 5$		(a)		(b)
$\# 6$	(a)		(b)	(c)
Total				

1. Evaluate the following integrals algebraically:
[10 points] (a) $\int_{0}^{\frac{\pi}{4}} \tan x d x$
[10 points] (b) $\int x e^{-x^{2}} d x$
[10 points] (c) $\int_{-3}^{3} \sqrt{9-x^{2}} d x \quad$ (Hint: draw a picture!)
2. [10 points] Given that

$$
\int_{0}^{3} f(x) d x=4, \quad \int_{3}^{6} f(x) d x=4, \quad \int_{2}^{6} f(x) d x=5
$$

find

$$
\int_{0}^{2}(2 f(t)-3) d t
$$

NOTE: show your steps!
3. A particle moves along a straight line with velocity

$$
v(t)=2 t \sqrt{1+2 t^{2}} .
$$

[10 points] (a) Determine the total displacement of the particle from $t=-2$ to $t=2$.
[10 points] (b) Determine the total distance traveled from $t=-2$ to $t=2$.
4. Consider the the region bounded by the curve $x=1-y^{4}$ and $x=0$.
[10 points] (a) Set up the integral for the area of this region. Do NOT evaluate the integral.
[10 points] (b) Set up the integral for the volume of the solid obtained by rotating this region about the \boldsymbol{y}-axis. Do NOT evaluate the integral.
5. On February 27, 2003 the outside temperature was rising at a rate of \sqrt{t} degrees per hour from midnight to 12 noon.
(a) [5 points] Denote by $T(t)$ the temperature t hours past midnight. Compute $T(t)-T(0)$.
(b) [5 points] It was observed that the temperature at 9 a.m. was three times the temperature at $1 \mathrm{a} . \mathrm{m}$. What is the temperture at 1 a.m.?
6. [10 points] Define a function $g(x)$ by

$$
g(x)=\int_{-1}^{x} f(t) d t
$$

where the graph of $f(x)$ is shown on the right.
(1) [3 points] Sketch the graph of g from $x=-1$ to $x=4$.
(2) [4 points] Determine on which interval g is increasing and decreasing. Explain your reasoning.
(3) [4 points] Determine the location of the local extrema of g. Explain your reasoning.

