# REVIEW SHEET FOR <br> MATH 132 FINAL EXAM, FALL 2003 

## SIMAN WONG

Disclaimer: This review sheet serves to give a highlight of the topics covered after Midterm \#2. It does NOT replace your textbook and/or your lecture notes.

## Comments about the practice exams/homework:

- practice exams are on the course website - these are taken verbatim from old exams and may NOT cover the same materials as we do
- the practice exams are intended to give you an IDEA what the questions are like; your homework problems are indented to give you a chance to LEARN the course materials. The actual exam MAY contain problems DIFFERENT from those in the practice exams and/or homeworks!
- for additional practice: try the end-of-chapter review problems


## Other comments about your exams:

- SHOW YOUR WORK!
- study the examples in your textbook
- the final exam is TWO HOURS LONG


## 11.1, 11.2

- a series $\sum a_{n}$ converges if and if only the sequence of partial sums $s_{n}=a_{1}+\cdots+a_{n}$ converges
- basic series:

|  | harmonic series | geometric series | $p$-series | telescopic series |
| :--- | :--- | :--- | :--- | :--- |
| shape | $\sum_{n=1}^{\infty} \frac{1}{n}$ | $\sum_{n=0}^{\infty} a r^{n}$ | $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ | Example: $\sum_{n=1}^{\infty} \frac{1}{n(n-2)}$ |
| behavior | always divergent | conv if $\|r\|<1$ <br> div if $\|r\| \geq 1$ | conv if $p>1$ <br> div if $p \leq 1$ |  |

- $n$-term test:
- if $\lim _{n \rightarrow \infty} a_{n} \neq 0$ or if this limit does not exist, then $\sum a_{n}$ diverges
- warning: the $n$-term test is only a ONE-WAY test - if $\lim _{n \rightarrow \infty} a_{n}=0$ then the series MAY or MAY NOT converge !!
- note the difference between a $p$-series $\sum_{n} \frac{1}{n^{p}}$ and a geometric series $\sum_{n} \frac{a}{r^{n}}-$ note
the different locations where $n$ appear

[^0]Flow-chart for convergent test:

$11.3,11.4$

- integral test
- suppose $a_{n}=f(n)$ for some continuous, decreasing, positive function $f$, then

$$
\int_{1}^{\infty} f(x) d x \text { converges } \Longleftrightarrow \sum a_{n} \text { converges }
$$

- error estimate for integral test:

$$
\int_{n+1}^{\infty} f(x) d x<s-s_{n}<\int_{n}^{\infty} f(x) d x
$$

- comparison test
- suppose both $\sum a_{n}, \sum b_{n}$ both have POSITIVE terms.
* if $a_{n} \leq b_{n}$ for all large $n$ and if $\sum b_{n}$ converges, then $\sum a_{n}$ converges
* if $a_{n} \geq b_{n}$ for all large $n$ and if $\sum a_{n}$ diverges, then $\sum b_{n}$ diverges
- error estimate for the comparison test: if $0 \leq a_{n} \leq b_{n}$ for all $n$ and if $\sum_{n} b_{n}$ converges, then

$$
0 \leq s-s_{n}<b_{n+1}+b_{n+2}+\ldots
$$

- limit comparison test
- suppose both $\sum a_{n}, \sum b_{n}$ both have POSITIVE terms. If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$ exists and is finite and non-zero, then

$$
\sum a_{n} \text { converges } \Longleftrightarrow \sum b_{n} \text { converges }
$$

- NOTE: there is NO error estimate for the limit comparison test!
- to use the two comparisons we need something to compare! Good candidates: p-series and geometric series. Also, remember the relative size of functions:

$$
\text { powers of } \log n \ll \text { positive powers of } n \ll(\text { fixed number }>1)^{n} \ll n!\ll n^{n}
$$

## 11.5:

- $\begin{gathered}\text { alternating series test } \\ \\ \quad \text { - every } b_{i}>0 \\ \\ \quad-\lim _{n \rightarrow \infty} b_{n}=0 \\ \\ \quad-b_{1} \geq b_{2} \geq b_{3} \geq \cdots\end{gathered}$
then the alternating series $\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}=b_{1}-b_{2}+b_{3}-b_{4} \pm \cdots \quad$ converges
- error estimates: suppose the alternating series $b_{1}-b_{2}+b_{3}-b_{4} \pm \cdots$ satisfies the AST, then

$$
\left|s-s_{n}\right| \leq b_{n+1}
$$

## 11.6:

- $\sum a_{n}$ is called absolutely convergent if $\sum\left|a_{n}\right|$ converges
- $\sum a_{n}$ is called conditionally convergent if $\sum a_{n}$ converges but $\sum\left|a_{n}\right|$ does not.
- Equivalently: $\sum a_{n}$ converges but not absolutely converges
- Theorem: absolutely convergent $\Rightarrow$ convergent
- converse is FALSE! E.g. $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ converges but NOT absolutely converges.
- Ratio Test:

| $\lim _{n \rightarrow \infty}\left\|\frac{a_{n+1}}{a_{n}}\right\|$ | exists and is $<1$ | exists and is $>1 ;$ or <br> if the limit is $+\infty$ | exists and is $=1$; or <br> if the limit does not exist |
| :--- | :--- | :--- | :--- |
| Conclusion | absolute conv. | divergence | inconclusive |

## $11.8,11.9$

- given a power series, use the ratio test to find its radius of convergence, interval of convergence and its center
- don't forget to check the end points when you try to determine the IOC !
- can get power series representation of functions by manipulating geometric series - the basic idea is to turn your expression into something that resemble $\frac{1}{1-\text { blah }}$ :
- Step 0: make sure the numerator is 1
- Step 1: make sure the denominator begins with the coefficient 1
- Step 2: arrange the denominator so that it looks like 1 - blah
- Step 3: apply the geometric series formula - so long as $||b l a h|<1$
- within the interval of convergence you can differentiate and/or integrate a power series term-by-term
- use this to get power series representation for $\arctan x$ and for $\ln (1-x)$ (both for $|x|<1$ )


### 11.10

- Taylor polynomials
- know how to compute Taylor series \& MacLaurin series
- Taylor series with center $a: \quad \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$
- MacLaurin series:

Taylor series with center 0; i.e. $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}$

- know the series (and the interval of convergence) of the basic functions:

$$
e^{x}, \sin x, \cos x, \arctan x, \ln (1-x), \frac{1}{1-x}
$$

- applications: e.g. computing indefinite integrals; computing limits; estimating definite integrals (in conjunction with error estimates)


[^0]:    Date: May 12, 2003.
    Copyright © 2003 by Siman Wong. All rights reserved.

