Disclaimer: This review sheet serves to give a highlight of the topics covered after Midterm #2. It does NOT replace your textbook and/or your lecture notes.

Comments about the practice exams/homework:
- practice exams are on the course website — these are taken verbatim from old exams and may NOT cover the same materials as we do
- the practice exams are intended to give you an IDEA what the questions are like; your homework problems are indented to give you a chance to LEARN the course materials. The actual exam MAY contain problems DIFFERENT from those in the practice exams and/or homeworks!
- for additional practice: try the end-of-chapter review problems

Other comments about your exams:
- SHOW YOUR WORK!
- study the examples in your textbook
- the final exam is TWO HOURS LONG

11.1, 11.2

- a series $\sum a_n$ converges if and only if the sequence of partial sums $s_n = a_1 + \cdots + a_n$ converges
- basic series:

<table>
<thead>
<tr>
<th>shape</th>
<th>harmonic series</th>
<th>geometric series</th>
<th>p-series</th>
<th>telescopic series</th>
</tr>
</thead>
<tbody>
<tr>
<td>behavior</td>
<td>always divergent</td>
<td>conv if $</td>
<td>r</td>
<td>< 1$</td>
</tr>
<tr>
<td></td>
<td>$\sum_{n=1}^{\infty} \frac{1}{n}$</td>
<td>$\sum_{n=0}^{\infty} ar^n$</td>
<td>$\sum_{n=1}^{\infty} \frac{1}{n^p}$</td>
<td>div if $p \leq 1$</td>
</tr>
</tbody>
</table>

- n-term test:
 - if $\lim_{n\to\infty} a_n \neq 0$ or if this limit does not exist, then $\sum a_n$ diverges
 - warning: the n-term test is only a ONE-WAY test – if $\lim_{n\to\infty} a_n = 0$ then the series MAY or MAY NOT converge !
- note the difference between a p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ and a geometric series $\sum_{n=1}^{\infty} \frac{a}{n^p}$ — note the different locations where n appear

Date: May 12, 2003.
Copyright ©2003 by Siman Wong. All rights reserved.
Flow-chart for convergent test:

Does $\sum_n a_n$ converge?

- $\lim_{n \to \infty} a_n = 0$?
 - no → divergent

 - no → all terms positive?
 - no → AST? ratio test?
 - yes → integral test? comparison tests? ratio test?
 - yes → proceed accordingly

11.3, 11.4

- integral test
 - suppose $a_n = f(n)$ for some continuous, decreasing, positive function f, then
 \[\int_1^\infty f(x) \, dx \text{ converges } \iff \sum a_n \text{ converges} \]
 - error estimate for integral test:
 \[\int_{n+1}^{\infty} f(x) \, dx < s_n - s_n < \int_n^\infty f(x) \, dx \]

- comparison test
 - suppose both $\sum a_n, \sum b_n$ both have positive terms.
 * if $a_n \leq b_n$ for all large n and if $\sum b_n$ converges, then $\sum a_n$ converges
 * if $a_n \geq b_n$ for all large n and if $\sum a_n$ diverges, then $\sum b_n$ diverges
 - error estimate for the comparison test: if $0 \leq a_n \leq b_n$ for all n and if $\sum b_n$ converges, then
 \[0 \leq s - s_n < b_{n+1} + b_{n+2} + \ldots \]

- limit comparison test
 - suppose both $\sum a_n, \sum b_n$ both have positive terms. If $\lim_{n \to \infty} \frac{a_n}{b_n}$ exists and is finite and non-zero, then
 \[\sum a_n \text{ converges } \iff \sum b_n \text{ converges} \]
 - NOTE: there is NO error estimate for the limit comparison test!

- to use the two comparisons we need something to compare! Good candidates: p-series and geometric series. Also, remember the relative size of functions:
 \[
 \text{powers of log } n \ll \text{positive powers of } n \ll (\text{fixed number } > 1)^n \ll n! \ll n^n
 \]
11.5:

- **alternating series test**
 - If
 - every \(b_i > 0\)
 - \(\lim_{n \to \infty} b_n = 0\)
 - \(b_1 \geq b_2 \geq b_3 \geq \cdots\)

 then the alternating series \(\sum_{n=1}^{\infty} (-1)^{n-1}b_n = b_1 - b_2 + b_3 - b_4 \pm \cdots\) converges

- **error estimates**: suppose the alternating series \(b_1 - b_2 + b_3 - b_4 \pm \cdots\) satisfies the AST, then \(|s - s_n| \leq b_{n+1}\)

11.6:

- \(\sum a_n\) is called **absolutely convergent** if \(\sum |a_n|\) converges
- \(\sum a_n\) is called **conditionally convergent** if \(\sum a_n\) converges but \(\sum |a_n|\) does not.
 - Equivalently: \(\sum a_n\) converges but not absolutely converges
- **Theorem**: absolutely convergent \(\implies\) convergent
 - converse is FALSE! E.g. \(\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}\) converges but NOT absolutely converges.
- **Ratio Test**:

 \[
 \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} \left| \begin{array}{c}
 \text{exists and is } < 1 \\
 \text{exists and is } > 1; \text{ or if the limit is } +\infty \\
 \text{exists and is } = 1; \text{ or if the limit does not exist}
 \end{array} \right|
 \]

 Conclusion: absolute conv. divergence inconclusive

11.8, 11.9

- given a power series, use the ratio test to find its radius of convergence, interval of convergence and its center

 - don’t forget to check the end points when you try to determine the IOC!
- can get power series representation of functions by manipulating geometric series – the basic idea is to turn your expression into something that resemble \(\frac{1}{1 - \text{blah}}\):

 - Step 0: make sure the numerator is 1
 - Step 1: make sure the denominator begins with the coefficient 1
 - Step 2: arrange the denominator so that it looks like \(1 - \text{blah}\)
 - Step 3: apply the geometric series formula – so long as \(|\text{blah}| < 1\)
- within the interval of convergence you can differentiate and/or integrate a power series term-by-term

 - use this to get power series representation for \(\arctan x\) and for \(\ln(1 - x)\) (both for \(|x| < 1\))
Taylor polynomials

- know how to compute Taylor series & MacLaurin series
 - Taylor series with center a: \[\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n \]
 - MacLaurin series: Taylor series with center 0; i.e. \[\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n \]

- know the series (and the interval of convergence) of the basic functions:
 \[e^x, \sin x, \cos x, \arctan x, \ln(1 - x), \frac{1}{1 - x} \]

- applications: e.g. computing indefinite integrals; computing limits; estimating definite integrals (in conjunction with error estimates)