Solutions to the review problems

1.

First we find the points where the two curves coincide: $x^{3}-x=3 x$ gives 0 and ± 2 as solutions. Since both functions are odd, the area is given by two times the difference of the areas bounded by each of the two curves and $x=0$ and $x=2$ (but we stuff them in one integral immediately)

$$
\begin{aligned}
2 \int_{0}^{2}\left|3 x-\left(x^{3}-x\right)\right| d x & =2 \int_{0}^{2} 4 x-x^{3} d x \\
& =2\left(2 x^{2}-\left.\frac{1}{4} x^{4}\right|_{0} ^{2}\right) \\
& =16-8-(0-0)=8
\end{aligned}
$$

2.

First we find the general antiderivative with a "mental" substitution $u=2 x$:

$$
f(x)=\int e^{2 x}=\frac{1}{2} e^{2 x}+C
$$

then we have to determine the constant C using the condition $f(0)=5$:

$$
f(0)=\frac{1}{2}+C=5 \Rightarrow C=4.5
$$

Finally we can find $f(10)=\frac{1}{2} e^{20}+4.5=\frac{1}{2}\left(e^{20}+9\right)$.
3.
a) nothing to do...
b) We know that $f(5)-f(-5)=\int_{-5}^{5} f^{\prime}(x) d x$ but since $f^{\prime}(x) \geq 0$, the right hand side is just the area bounded by f^{\prime}, the y -axis and $x=-5$ and $x=5$. Thus $f(5)-f(-5)=29$. Since $f(-5)$ was given to be 10 we find

$$
f(5)=29+10=39
$$

c) Since $f^{\prime}(x) \geq 0$ for $-5 \leq x \leq 5$ we know that $\int_{-5}^{5}\left|f^{\prime}(x)\right| d x=\int_{-5}^{5} f^{\prime}(x) d x=$ 29.
4.
a) We use the ratio test: $a_{n}=\frac{4 x^{2 n}}{3^{n} n!}$ so

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{4 x^{2(n+1)}}{3^{(n+1)}(n+1)!} \frac{3^{n} n!}{4 x^{2 n}}\right|=\lim _{n \rightarrow \infty} \frac{x^{2}}{3(n+1)}=0
$$

(remember that $(k+1)!=(k+1) k!)$. So the series converges for all x and the radius of convergence is ∞.
b) The way it is stated the series is no power series, so we can not compute a radius of convergence. If we assume $\sum_{n=0}^{\infty} \frac{4^{n} x^{n}}{3^{n}}$, we can use the root test: Now $a_{n}=\frac{4^{n} x^{n}}{3^{n}}$ and

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \sqrt[n]{\left(\frac{4|x|}{3}\right)^{n}}=\lim _{n \rightarrow \infty} \frac{4|x|}{3}=\frac{4}{3}|x|
$$

For the series to converge we need this limit to be smaller than $1: \frac{4}{3}|x|<1$. This leaves us with $|x|<\frac{3}{4}$. Therefore the radius of convergence is $\frac{3}{4}$.
5.
a) Because of the factorial in the denominator, we try the ratio test: We have $a_{n}=\frac{4 n+1}{(2 n+1)!}$ so

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{4(n+1)+1}{(2(n+1)+1)!} \frac{(2 n+1)!}{4 n+1}\right| \\
& =\lim _{n \rightarrow \infty} \frac{4 n+5}{(2 n+1+2)!} \frac{(2 n+1)!}{4 n+1} \\
& =\lim _{n \rightarrow \infty} \frac{4 n+5}{(2 n+1+2)(2 n+1+1)} \frac{1}{4 n+1} \\
& =\lim _{n \rightarrow \infty} \frac{4 n+5}{(2 n+3)(2 n+2)(4 n+1)} \frac{\frac{1}{n^{3}}}{\frac{1}{n^{3}}} \\
& =\lim _{n \rightarrow \infty} \frac{\frac{4}{n^{2}}+\frac{5}{n^{3}}}{\left(2+\frac{3}{n}\right)\left(2+\frac{2}{n}\right)\left(4+\frac{1}{n}\right)} \\
& =0
\end{aligned}
$$

by the standard argument for rational functions. Since this limit is smaller than 1 the series is absolutely convergent.
b) This series is in fact the power series in problem 4 b) evaluated at 1 Since there the radius of convergence was $\frac{3}{4}$ which is smaller than 1 we know that the series is divergent and therefore not absolutely convergent. (An other way to argue would be to state that the series is in fact a geometric series with $r=\frac{4}{3}>1$.)
c) We can use the comparison test. The series $\sum a_{n}$ is absolutely convergent if $\sum\left|a_{n}\right|$ is convergent. In our case we have $a_{n}=\frac{1}{4^{n}-2^{n}}$ and since $4^{n}>2^{n}$ for $n>0$ all a_{n} are positive. So we know $\left|a_{n}\right|=a_{n}$. Now we can estimate our series with a geometric series from above: Certainly $\frac{1}{4^{n}-2^{n}}=\frac{1}{2^{n}\left(2^{n}-1\right)} \leq \frac{1}{2^{n}}=\left(\frac{1}{2}\right)^{n}$ and since $\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}$ is convergent (it is a geometric series with $r=1 / 2$) our series must be convergent too. Again: since all terms are positive anyways the series is absolutely convergent then.
6.

By definition the improper integral is computed in the following way:

$$
\begin{aligned}
\int_{5}^{\infty} \frac{1}{x} d x & =\lim _{t \rightarrow \infty} \int_{5}^{t} \frac{1}{x} d x=\left.\lim _{t \rightarrow \infty} \ln (x)\right|_{5} ^{t} \\
& =\lim _{t \rightarrow \infty} \ln (t)-\ln (5)=\infty
\end{aligned}
$$

Thus the integral is divergent.
7.

We can use the ratio test once again: $a_{n}=\frac{n x^{n}}{3^{n}}$ so

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1) x^{(n+1)}}{3^{(n+1)}} \frac{3^{n}}{n x^{n}}\right|=\lim _{n \rightarrow \infty} \frac{(n+1)|x|}{3 n}=\frac{|x|}{3}
$$

For the series to be convergent for a particular x this limit has to be smaller than 1 , so the series converges for $|x|<3$ for sure (we don't know what happens at ± 3) and the radius of convergence is 3 .
8. a) This is sort of "reverse engineering": We know, that

$$
\sum_{n=1}^{\infty} a r^{n-1}=\frac{a}{1-r}
$$

holds, so a geometric series with $a=1$ and $r=-x^{2}$ would have the right sum (and it would converge for $|x|<1$). We only have to bring it to a power series form. The terms of the geometric series read $a_{n}=\left(-x^{2}\right)^{n-1}=(-1)^{n-1} x^{2 n-2}$ The power series is therefore as follows:

$$
f(x)=\sum_{n=1}^{\infty}(-1)^{n-1} x^{2 n-2}, \quad|x|<1
$$

b) We can integrate power series as we would integrate polynomials. Using the hint and part a) we find that

$$
\tan ^{-1}+C=\int \frac{1}{1+x^{2}} d x=\int \sum_{n=1}^{\infty}(-1)^{n-1} x^{2 n-2} d x
$$

for $|x|<1$. Now

$$
F(x)=\int \sum_{n=1}^{\infty}(-1)^{n-1} x^{2 n-2} d x=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{2 n-1} x^{2 n-1}+C
$$

We are left with finding the correct value of $C: \tan ^{-1}(0)=0$ and $F(0)=C$ so C must be zero. Thus we have found

$$
\tan ^{-1}(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2 n-1} x^{2 n-1}, \quad|x|<1
$$

9.

The fundamental theorem of calculus tells us that if $G(x)=\int_{a}^{x} g(t) d t$ then $G^{\prime}(x)=g(x)$ holds. However, here the upper bound of the integral does not read x but $3 x$. If we define $G(x)=\int_{3}^{x} e^{t^{2}} d t$ then $F(x)=G(3 x)$. Therefore we have
a) by chain rule $F^{\prime}(x)=G^{\prime}(3 x) 3=3 e^{(3 x)^{2}}$.
b) by a) $F^{\prime}(0)=3 e^{(3 \cdot 0)^{2}}=3$.
c) by the laws for definite integrals $F(1)=\int_{3}^{3} e^{t^{2}} d t=0$.

An other way for problem 9 would be to use substitution rule to transform $\int_{3}^{3 x} e^{t^{2}} d t=\int_{1}^{x} 3 e^{(3 t)^{2}} d t$ first and then use the FTC directly.
10.
a) The formula for the derivative of a parametric curve gives

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{e^{t}+2 t}{\cos (t)+2}
$$

b) we have not covered arc length
c) we still have not covered arc length
d) the equation reads in general

$$
y-y_{0}=\frac{d y}{d x}(0)\left(x-x_{0}\right)
$$

In our case this gives

$$
y+3=\frac{1}{3}(x-1) .
$$

11.

The divergence test tells us that a necessary condition for a series to converge is, that the limit of the terms a_{n} is 0 as n goes to infinity. But here we have

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{4 n^{3}}{2 n^{3}}=\lim _{n \rightarrow \infty} 2=2 \neq 0
$$

So the series must be divergent.
12.

We start with the observation, that $e^{2 x}=\left(e^{x}\right)^{2}$. Now we can substitute $u=e^{x}$ which gives $d u=e^{x} d x$. Thus (remembering the hint for 8 b))

$$
\int \frac{e^{x}}{e^{2 x}+1} d x=\int \frac{1}{u^{2}+1} d u=\tan ^{-1}(u)+C=\tan ^{-1}\left(e^{x}\right)+C
$$

