
Solutions to the review problems

1.
First we find the points where the two curves coincide: x3− x = 3x gives 0 and
±2 as solutions. Since both functions are odd, the area is given by two times
the difference of the areas bounded by each of the two curves and x = 0 and
x = 2 (but we stuff them in one integral immediately)

2
∫ 2

0
|3x− (x3 − x)| dx = 2

∫ 2

0
4x− x3 dx

= 2(2x2 − 1
4x4|20)

= 16− 8− (0− 0) = 8

2.
First we find the general antiderivative with a “mental” substitution u = 2x:

f(x) =
∫

e2x =
1
2
e2x + C

then we have to determine the constant C using the condition f(0) = 5:

f(0) =
1
2

+ C = 5 ⇒ C = 4.5

Finally we can find f(10) = 1
2e20 + 4.5 = 1

2 (e20 + 9).

3.
a) nothing to do...
b) We know that f(5) − f(−5) =

∫ 5

−5
f ′(x) dx but since f ′(x) ≥ 0, the right

hand side is just the area bounded by f ′, the y-axis and x = −5 and x = 5.
Thus f(5)− f(−5) = 29. Since f(−5) was given to be 10 we find

f(5) = 29 + 10 = 39.

c) Since f ′(x) ≥ 0 for −5 ≤ x ≤ 5 we know that
∫ 5

−5
|f ′(x)| dx =

∫ 5

−5
f ′(x) dx =

29.

4.
a) We use the ratio test: an = 4x2n

3nn! so

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ 4x2(n+1)

3(n+1)(n + 1)!
3nn!
4x2n

∣∣∣∣ = lim
n→∞

x2

3(n + 1)
= 0

(remember that (k + 1)! = (k + 1)k!). So the series converges for all x and the
radius of convergence is ∞.
b) The way it is stated the series is no power series, so we can not compute a
radius of convergence. If we assume

∑∞
n=0

4nxn

3n , we can use the root test: Now
an = 4nxn

3n and

lim
n→∞

n
√
|an| = lim

n→∞
n

√(
4|x|
3

)n

= lim
n→∞

4|x|
3

=
4
3
|x|

1



For the series to converge we need this limit to be smaller than 1: 4
3 |x| < 1.

This leaves us with |x| < 3
4 . Therefore the radius of convergence is 3

4 .

5.
a) Because of the factorial in the denominator, we try the ratio test: We have
an = 4n+1

(2n+1)! so

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ 4(n + 1) + 1
(2(n + 1) + 1)!

(2n + 1)!
4n + 1

∣∣∣∣
= lim

n→∞

4n + 5
(2n + 1 + 2)!

(2n + 1)!
4n + 1

= lim
n→∞

4n + 5
(2n + 1 + 2)(2n + 1 + 1)

1
4n + 1

= lim
n→∞

4n + 5
(2n + 3)(2n + 2)(4n + 1)

1
n3

1
n3

= lim
n→∞

4
n2 + 5

n3

(2 + 3
n )(2 + 2

n )(4 + 1
n )

= 0

by the standard argument for rational functions. Since this limit is smaller than
1 the series is absolutely convergent.
b) This series is in fact the power series in problem 4 b) evaluated at 1 Since
there the radius of convergence was 3

4 which is smaller than 1 we know that
the series is divergent and therefore not absolutely convergent. (An other way
to argue would be to state that the series is in fact a geometric series with
r = 4

3 > 1.)
c) We can use the comparison test. The series

∑
an is absolutely convergent if∑

|an| is convergent. In our case we have an = 1
4n−2n and since 4n > 2n for

n > 0 all an are positive. So we know |an| = an. Now we can estimate our series
with a geometric series from above: Certainly 1

4n−2n = 1
2n(2n−1) ≤

1
2n =

(
1
2

)n

and since
∑∞

n=1

(
1
2

)n is convergent (it is a geometric series with r = 1/2) our
series must be convergent too. Again: since all terms are positive anyways the
series is absolutely convergent then.

6.
By definition the improper integral is computed in the following way:∫ ∞

5

1
x

dx = lim
t→∞

∫ t

5

1
x

dx = lim
t→∞

ln(x)|t5

= lim
t→∞

ln(t)− ln(5) = ∞

Thus the integral is divergent.
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7.
We can use the ratio test once again: an = nxn

3n so

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (n + 1)x(n+1)

3(n+1)

3n

nxn

∣∣∣∣ = lim
n→∞

(n + 1)|x|
3n

=
|x|
3

For the series to be convergent for a particular x this limit has to be smaller
than 1, so the series converges for |x| < 3 for sure (we don’t know what happens
at ±3) and the radius of convergence is 3.

8. a) This is sort of “reverse engineering”: We know, that

∞∑
n=1

arn−1 =
a

1− r

holds, so a geometric series with a = 1 and r = −x2 would have the right sum
(and it would converge for |x| < 1). We only have to bring it to a power series
form. The terms of the geometric series read an = (−x2)n−1 = (−1)n−1x2n−2

The power series is therefore as follows:

f(x) =
∞∑

n=1

(−1)n−1x2n−2, |x| < 1.

b) We can integrate power series as we would integrate polynomials. Using the
hint and part a) we find that

tan−1 +C =
∫

1
1 + x2

dx =
∫ ∞∑

n=1

(−1)n−1x2n−2 dx

for |x| < 1. Now

F (x) =
∫ ∞∑

n=1

(−1)n−1x2n−2 dx =
∞∑

n=1

(−1)n−1 1
2n− 1

x2n−1 + C

We are left with finding the correct value of C: tan−1(0) = 0 and F (0) = C so
C must be zero. Thus we have found

tan−1(x) =
∞∑

n=1

(−1)n−1

2n− 1
x2n−1, |x| < 1.

9.
The fundamental theorem of calculus tells us that if G(x) =

∫ x

a
g(t) dt then

G′(x) = g(x) holds. However, here the upper bound of the integral does not
read x but 3x. If we define G(x) =

∫ x

3
et2 dt then F (x) = G(3x). Therefore we

have
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a) by chain rule F ′(x) = G′(3x)3 = 3e(3x)2 .
b) by a) F ′(0) = 3e(3·0)2 = 3.
c) by the laws for definite integrals F (1) =

∫ 3

3
et2 dt = 0.

An other way for problem 9 would be to use substitution rule to transform∫ 3x

3
et2 dt =

∫ x

1
3e(3t)2 dt first and then use the FTC directly.

10.
a) The formula for the derivative of a parametric curve gives

dy

dx
=

dy
dt
dx
dt

=
et + 2t

cos(t) + 2
.

b) we have not covered arc length
c) we still have not covered arc length
d) the equation reads in general

y − y0 =
dy

dx
(0)(x− x0)

In our case this gives

y + 3 =
1
3
(x− 1).

11.
The divergence test tells us that a necessary condition for a series to converge
is, that the limit of the terms an is 0 as n goes to infinity. But here we have

lim
n→∞

an = lim
n→∞

4n3

2n3
= lim

n→∞
2 = 2 6= 0

So the series must be divergent.

12.
We start with the observation, that e2x = (ex)2. Now we can substitute u = ex

which gives du = exdx. Thus (remembering the hint for 8 b) )∫
ex

e2x + 1
dx =

∫
1

u2 + 1
du = tan−1(u) + C = tan−1(ex) + C.
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