## Solutions for Math 132 Fall '02 Final

1. We have $a_{n}=\left(\frac{n^{2}+2}{2 n^{2}-1}\right)^{n}$, whose $n$th root is simply $a_{n}^{1 / n}=\frac{n^{2}+2}{2 n^{2}-1}$. We consider the limit

$$
\lim a_{n}^{1 / n}=\lim \frac{n^{2}+2}{2 n^{2}-1}=\lim \frac{1+2 / n^{2}}{2-1 / n^{2}}=1 / 2
$$

Since this limit exists and is less than 1 , the series converges by the $n$th root test.
2. Let $P(t)$ be the position (in meters) at time $t$, then $P^{\prime}(t)=v(t)$ is the velocity in $\mathrm{m} / \mathrm{s}$ at time $t$ and $P^{\prime \prime}(t)=v^{\prime}(t)=a(t)$ is the acceleration. Since $a(t)=-1$, we have $v(t)=-t+v_{0}$ where $v_{0}$ is some constant. Plugging in $t=0$, we get $v(0)=0+v_{0}=4$, thus $v_{0}=4$ and

$$
v(t)=-t+4
$$

Note that $v(t) \geq 0$ for $0 \leq t \leq 4$ and $v(t) \leq 0$ for $4 \leq t \leq 6$. To get the total distance traveled, we must integrate the absolute value of the velocity.
(a) We get the distance traveled is

$$
\begin{aligned}
\int_{0}^{6}|-t+4| d t & =\int_{0}^{4}(-t+4) d t+\int_{4}^{6}(t-4) d t \\
& =\left.\left(-t^{2} / 2+4 t\right)\right|_{0} ^{4}+\left.\left(t^{2} / 2-4 t\right)\right|_{4} ^{6} \\
& =-8+16+(18-24-8+16)=10 \mathrm{~m}
\end{aligned}
$$

(b) On the other hand, the total displacement from $t=0$ to $t=6$ is simpler to calculate:

$$
\int_{0}^{6} v(t) d t=\int_{0}^{6}(-t+4) d t=-t^{2} / 2+\left.4 t\right|_{0} ^{6}=-18+24=6 m
$$

3. We have a water-holding parabola with lowest point at $(0,-4)$ and its reflection over the $x$-axis. The points of intersection are have $x$ coordinate satisfying $4-x^{2}=x^{2}-4$ i.e. $x= \pm 2$. Thus the curves meet at $(2,0)$ and $(-2,0)$. The area between the curve is calculated by either of the integrals

$$
\int_{-2}^{2}\left[\left(4-x^{2}\right)-\left(x^{2}-4\right)\right] d x=4 \int_{0}^{2}\left(4-x^{2}\right) d x
$$

However you slice it, the area between them is $\left.4\left(4 x-x^{3} / 3\right)\right|_{0} ^{2}=64 / 3$.
4. We rejoice at the sight of the odd power of $\sin (x)$ and immediately borrow one of these $\sin (x)$ 's to couple with $d x$ and put $u=\cos (x), d u=-\sin (x) d x$. We
then have

$$
\begin{aligned}
\int \sin ^{5}(x) \cos ^{2}(x) d x & =\int \sin ^{4}(x) \cos ^{2}(x)[\sin (x) d x] \\
& =\int\left(1-\cos ^{2}(x)\right)^{2} \cos ^{2}(x)[\sin (x) d x] \\
& =\int-\left(1-u^{2}\right)^{2} u^{2} d u \\
& =\int-\left(1-2 u^{2}+u^{4}\right) u^{2} d u \\
& =\int\left(-u^{2}+2 u^{4}-u^{6}\right) d u \\
& =-u^{3} / 3+2 u^{5} / 5-u^{7} / 7+C \\
& =-\cos ^{3}(x) / 3+2 \cos ^{5}(x) / 5-\cos ^{7}(x) / 7+C
\end{aligned}
$$

Now we use the fundamental theorem to calculate the definite integral to have value

$$
-\cos ^{3}(x) / 3+2 \cos ^{5}(x) / 5-\cos ^{7}(x) /\left.7\right|_{0} ^{\pi / 2}=0!
$$

(That's 0 (surprise!) which is equal to 0 , not $0!=0$ factorial which everybody knows is equal to 1.)
5. For $x=t\left(t^{2}-3\right), y=3\left(t^{2}-3\right)$, we need to calculate the slope of the tangent, which is, of course $d y / d x$. We use the chain rule to express this as $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}$. Now

$$
\frac{d x}{d t}=1\left(t^{2}-3\right)+t(2 t)=3 t^{2}-3, \quad \frac{d y}{d t}=6 t
$$

Thus,

$$
\frac{d y}{d x}=\frac{6 t}{3\left(t^{2}-1\right)}=\frac{2 t}{t^{2}-1}
$$

This quantity is 0 , giving a horizontal tangent, when the numerator vanishes, i.e. for $t=0$, or at the point $(0,-9)$. It is undefined (i.e. the denominator is 0 ), giving a vertical tangent when $t= \pm 1$ i.e. at the points $(2,-6)$ and $(-2,-6)$.
6. It is always a good idea to get acquainted with a series before you start investigating its convergence/divergence behavior. So, write out the first few (say 3) terms of the series to gain some familiarity with your opponent:
$\sum_{n=0}^{\infty}\left(\frac{\ln x}{2}\right)^{2 n}=\left(\frac{\ln x}{2}\right)^{0}+\left(\frac{\ln x}{2}\right)^{2}+\left(\frac{\ln x}{2}\right)^{4}+\cdots=1+\left(\frac{\ln x}{2}\right)^{2}+\left(\frac{\ln x}{2}\right)^{4}+\cdots$
First of all, let's note that this is a geometric series because it is of the type $\sum_{n=0}^{\infty}(B L O B)^{n}$. How come? Because $G O O P^{2 n}=\left(G O O P^{2}\right)^{n}$. So for our series we have

$$
\sum_{n=0}^{\infty}\left(\frac{\ln x}{2}\right)^{2 n}=\sum_{n=0}^{\infty}\left[\left(\frac{\ln x}{2}\right)^{2}\right]^{n}=\sum_{n=0}^{\infty}(B L O B)^{n}
$$

where

$$
B L O B=\left(\frac{\ln x}{2}\right)^{2}
$$

Such a series converges exactly when $|B L O B|<1$ and in that case it converges to $\frac{\text { first term }}{1-B L O B}$. Look carefully and notice that the series begins with $n=0$ not $n=1$ and $B L O B^{0}=1$ so the first term of the series is 1 . [Of course we know this because
we wrote out the first few terms.] So, summing up, we have the series converges exactly when

$$
\begin{aligned}
\left|\left(\frac{\ln x}{2}\right)^{2}\right| & <1 \text { which means } \\
\left|\frac{\ln x}{2}\right| & <1 \text { which means } \\
|\ln x| & <2 \text { which means } \\
-2<\ln x & <2 \text { which means } \\
e^{-2}<e^{\ln x} & <e^{2} \text { which means } \\
e^{-2}<x & <e^{2} .
\end{aligned}
$$

For these values of $x$, our series converges to

$$
\frac{1}{1-B L O B}=\frac{1}{1-(\ln x)^{2} / 4}=\frac{4}{4-(\ln x)^{2}}
$$

7. To use the integral test, we just turn the $\Sigma$ into a $\int$ and the $n$ 's into $x$ 's, tacking on a $d x$. The series converges if and only if the integral does.
a)

$$
\begin{aligned}
\int_{1}^{\infty} \frac{1}{1+x^{2}} d x & =\lim _{B \rightarrow \infty} \int_{1}^{B} \frac{1}{1+x^{2}} d x \\
& =\left.\lim _{B \rightarrow \infty} \arctan (x)\right|_{1} ^{B} \\
& =\lim _{B \rightarrow \infty} \arctan (B)-\arctan (1) \\
& =\pi / 2-\pi / 4=\pi / 4
\end{aligned}
$$

Thus the series converges by the integral test.
b) First let's do the indefinite integral:
$\int \frac{\ln x}{x} d x=\int u d u=u^{2} / 2+C=(\ln x)^{2} / 2+C, \quad$ where $u=\ln x, d u=d x / x$.
Now on the improper integral:

$$
\begin{aligned}
\int_{1}^{\infty} \frac{\ln x}{x} d x & =\lim _{B \rightarrow \infty} \int_{1}^{B} \frac{\ln x}{x} d x \\
& =\lim _{B \rightarrow \infty}(\ln x)^{2} /\left.2\right|_{1} ^{B} \\
& =\lim _{B \rightarrow \infty}(\ln B)^{2} / 2-(\ln 1)^{2} / 2 \\
& =\infty
\end{aligned}
$$

Hence the sum diverges.
8. Note the typo $n=1$ instead of $i=1$. We use ART (the absolute ratio test) of course. We have the $n$th term of the series is $a_{n}=(-1)^{n} 3^{n}(x-1)^{n} / n$, so $a_{n+1}=$ $(-1)^{n+1} 3^{n+1}(x-1)^{n+1} /(n+1)$. We want to calculate $L=\lim _{n \rightarrow \infty}\left|a_{n+1} / a_{n}\right|$. First we simplify this ratio:

$$
\begin{aligned}
\left|a_{n+1} / a_{n}\right| & =\frac{3^{n+1}|x-1|^{n+1} n}{3^{n}|x-1|^{n}(n+1)} \\
& =3|x-1| \frac{n}{n+1}
\end{aligned}
$$

Now it's immediate that $L=3|x-1|$ since the ratio $n /(n+1)$ goes to 1 . By the absolute ratio test, we know that
the series CONVERGES ABSOLUTELY when $L<1$, i.e. when $|x-1|<1 / 3$,
and we also know that the series DIVERGES when $L>1$ i.e. when $|x-1|>1 / 3$.
It remains to check what happens when $L=1$ (that's when ART is inconclusive). $L=1$ means $|x-1|=1 / 3$, i.e. either $x-1=1 / 3$ or $x-1=-1 / 3$, in other words it corresponds to $x=4 / 3,2 / 3$. When $x=4 / 3$, the series is

$$
\sum_{n=1} \infty \frac{(-1)^{n} 3^{n}(4 / 3-1)^{n}}{n}=\sum_{n=1} \infty \frac{(-1)^{n}}{n}
$$

i.e. the series just becomes the alternating harmonic series, which converges by the Alternating Series Test. On the other hand, at the other endpoint, when $x=2 / 3$, we just get the harmonic series, which diverges. Thus, the series converges absolutely for $2 / 3<x<4 / 3$, conditionally for $x=4 / 3$ and diverges for all other $x$.
9. We know that

$$
e^{u}=\sum_{n=0}^{\infty} \frac{u^{n}}{n!}=1+u+u^{2} / 2!+u^{3} / 3!+u^{4} / 4!+\ldots
$$

is a convergent power series for every $u$. Plugging in $u=-x^{2}$, we get

$$
e^{-x^{2}}=\sum_{n=0}^{\infty} \frac{\left(-x^{2}\right)^{n}}{n!}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{n!}=1-x^{2}+x^{4} / 2!-x^{6} / 3!+x^{8} / 4!-\ldots
$$

for every $x$. If we multipltiply this by $x^{2}$, it will still converge for every $x$ giving

$$
x^{2} e^{-x^{2}}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+2}}{n!}=x^{2}-x^{4}+x^{6} / 2!-x^{8} / 3!+x^{10} / 4!-\ldots
$$

Now we have a theorem to the effect that we can integrate a power series term-byterm and that the resulting power series will converge in the same interval as the original power series. Thus we know that

$$
\begin{aligned}
\int x^{2} e^{-x^{2}} d x & =\sum_{n=0}^{\infty} \int(-1)^{n} \frac{x^{2 n+2}}{n!} d x \\
& =C+\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(2 n+3)} x^{2 n+3} \\
& =C+x^{3} / 3-x^{5} / 5+x^{7} /(7 \cdot 2!)-x^{9} /(9 \cdot 3!)+x^{11} /(11 \cdot 4!)-\ldots
\end{aligned}
$$

is a convergent power series for every $x$.

