REVIEW SHEET FOR
 MATH 132 MIDTERM \#2, SPRING 2002

COURSE CHAIR: SIMAN WONG

Disclaimer: This review sheet serves to give a highlight of the topics to be covered in Midterm \#2. It does NOT replace your textbook and/or your lecture notes.

Comments about the practice exams/homework:

- practice exams are on the course website - these are taken verbatim from old exams and may NOT cover the same materials as we do
- YOUR exam is 90 minutes long; the old practice exams are two hours long
- the practice exams are intended to give you an IDEA what the questions are like; your homework problems are indented to give you a chance to LEARN the course materials. The actual exam MAY contain problems DIFFERENT from those in the practice exams and/or homeworks!
- for additional practice: try the end-of-chapter review problems

Other comments about your exams:

- any request for makeup/conflict/LDSS/special request: TWO WEEKS OF NOTICE!
- calculator is not allowed for symbolic test!
- SHOW YOUR WORK!
- study the examples in your textbook

6.2:

- basic formula for volume by slices: $\int_{a}^{b} A(x) d x$, where $A(x)$ denotes the area of the cross section at x
- determine $A(x)$ BASED ON your situation. Do NOT randomly put in a ' πx^{2} ' !! For example: if the cross section is a disc: πx^{2}; an annulus: $\pi\left(R^{2}-r^{2}\right)$; squares: x^{2}, etc.

7.1:

- integration by parts: $\int u d v=u v-\int v d u$
- you might have to apply IBP multiple times to finish the problem (e.g. $\int x^{n} e^{x} d x$)
- watch out for problems where you apply IBP twice and recover the original integral, with a minus sign (e.g. $\int e^{x} \sin x d x$)

7.2:

- basic stragety for $\int \sin ^{m} x \cos ^{n} x$:

[^0]- if one of m, n is odd (say cos), split off one copy of this odd power and use $\sin ^{2} x+$ $\cos ^{2} x=1 \mathrm{a}$
- if both m, n are even, use the double angle formula

$$
\sin ^{2} x=(1-\cos 2 x) / 2, \cos ^{2} x=(1-\cos 2 x) / 2
$$

- for $\int \tan ^{m} x \sec ^{n} x d x$:
- if the power of sec is even, save a factor of $\sec ^{2} x$ and use $1+\tan ^{2} x$
- if the power of \tan is odd, save a factor of $\sec x \tan x$ and use $\tan ^{2} x=\sec ^{2} x-1$
- you need to know

$$
\int \tan x d x=\ln |\sec x|+C, \quad \int \sec x d x=\ln |\tan x+\sec x|+C
$$

7.3:

- first and foremost, you use trig substitution only when you have the square root of a degree 2 polynomial
- three basic type:
$\sqrt{a^{2}-x^{2}}: \quad x=a \sin \theta ; \quad \sqrt{a^{2}+x^{2}}: \quad x=a \tan \theta \quad \sqrt{x^{2}-a^{2}}: \quad x=a \sec \theta$

7.8:

- two basic types of improper integrals:
- Suppose f 'blows up' at $x=a$; then $\int_{a}^{b} f(x) d x:=\lim _{\alpha \rightarrow a^{+}} \int_{\alpha}^{b} f(x) d x$. Similarly, if f 'blows up' at $x=b$, then $\int_{a}^{b} f(x) d x:=\lim _{\beta \rightarrow b^{-}} \int_{a}^{\beta} f(x) d x$.
$-\int_{-\infty}^{b} f(x) d x:=\lim _{a \rightarrow-\infty} \int_{a}^{b} f(x) d x ; \quad \int_{a}^{\infty} f(x) d x:=\lim _{b \rightarrow+\infty} \int_{a}^{b} f(x) d x$
- if f 'blows up' at some point between $[a, b]$ then we have to split up $\int_{a}^{b} f(x) d x$ into a sum of integrals over subintervals so that the blowup points are endpoints of these subintervals; cf. example 7

10.1, 10.2, 10.3:

- for the parametric curve $(x(t), y(t))$,

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t} ; \quad \frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y / d t}{d x / d t}\right) \neq \frac{d^{2} y / d t^{2}}{d^{2} x / d t^{2}}!!!!
$$

- arc length formula: $\int_{a}^{b} \sqrt{\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d x}{d t}\right)^{2}} d t$
- surface area formula: $\int_{a}^{b} 2 \pi y \sqrt{\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d x}{d t}\right)^{2}} d t$

[^0]: Date: March 15, 2002.
 Copyright © 2002 by Siman Wong. All rights reserved.

