Math 132 - Calculus II Review Problems for Test 1

February 22, 2002

1. The function $f(x)=1 /\left(x^{2}+1\right)$ has an antiderivative $F(x)$ such that $F(1)=0$. Find $F(x)$.
2. Write the following limit as a definite integral over the interval [1, 2]:

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{1+x_{i}} \Delta x
$$

3. Using the Fundamental Theorem of Calculus, evaluate $\int_{0}^{\pi / 4} \sec ^{2} t d t$.
4. Use a substitution to evaluate the following integrals.
a) $\int \sin (3 s+1) d s$
b) $\int \frac{d x}{4 x-7}$
c) $\int \frac{x}{x-5} d x$
d) $\int_{0}^{\pi / 2} \sin ^{5} x \cos x d x$
e) $\int_{1}^{e} \frac{\ln t}{t} d t$
5. Find the area trapped between the two curves $y=x^{2}-4$ and $y=4-x^{2}$.
6. Find the area trapped between the two curves $y=x^{2}-4$ and $y=4-x^{2}$ over the interval $[-1,1]$.
7. Find the area trapped between $y=2 x-x^{2}$ and $y=1-e^{-x}$. These two curves obviously intersect at $x=0$. Use your calculator to find the x-coordinate of the second point of intersection.
8. A solid of width 4 cm has a vertical cross section $x \mathrm{~cm}$ from its left side which is a square of side length e^{-x}. Find its volume.
9. Let R be the region in the $x y$-plane bounded by the graph of $f(x)=1 / x$, the x-axis, and the vertical lines $x=1$ and $x=2$. Find the volume of the solid obtained by rotating R about the x-axis.
10. Find the volume of the solid obtained by rotating the region R of problem $\# 9$ above about the y-axis.
