• It is not sufficient to just write the answers. You must *explain* how you arrive at your answers showing all your work.

- 1. (Section 7.4 problem 76 page 516, available on webassign eBook)
 - (a) Use integration by parts to show that for every integer n > 1,

$$\int \frac{dx}{(x^2+a^2)^n} = \frac{x}{2a^2(n-1)(x^2+a^2)^{n-1}} + \frac{2n-3}{2a^2(n-1)}\int \frac{dx}{(x^2+a^2)^{n-1}}$$

Hint: Assume n > 1 and use integration by parts of $\int \frac{dx}{(x^2+a^2)^{n-1}}$ to prove the equality read from right to left. Note that $x^2 = (x^2 + a^2) - a^2$.

(b) Use part 1a to evaluate
$$\int \frac{dx}{(x^2+1)^2}$$
 and $\int \frac{dx}{(x^2+1)^3}$.

2. (Section 11.1 problem 53 page 736, available on webassign eBook) Determine if the sequence converges or diverges. If it converges, find the limit.

$$a_n = \left(1 + \frac{2}{n}\right)^n$$

Hint: Consider first the sequence $\ln(a_n)$. Note that $n \ln(x) = \frac{\ln(x)}{1/n}$.

- 3. (Section 11.1 problem 76 page 736, available on webassign eBook).
 - (a) If a_n is convergent, show that $\lim_{n\to\infty} a_{n+1} = \lim_{n\to\infty} a_n$.
 - (b) A sequence $\{a_n\}$ is defined by $a_1 = 1$ and $a_{n+1} = \frac{1}{1+a_n}$ for $n \ge 1$. Assuming that $\{a_n\}$ is convergent, find its limit.
- 4. (Section 11.1 problem 85 page 736, available on webassign eBook). Let the sequence {a_n}[∞]_{n=1} be defined by the rule a₁ = √2 and a_{n+1} = √2a_n. Show that the sequence is convergent, by carefully proving the hypothesis of the monotonic sequence theorem:
 (i) the sequence is bounded above by 2, (ii) the sequence is increasing. Finally compute the limit using the limit laws and theorems.
- 5. (Section 11.1 page 737 problem 98).
 - (a) Use the precise definition of the limit of a sequence to prove: **Theorem:** If $\lim_{n\to\infty} a_{2n} = L$ and $\lim_{n\to\infty} a_{2n+1} = L$, then $\lim_{n\to\infty} a_n = L$.
 - (b) If $a_1 = 1$ and

$$a_{n+1} = 1 + \frac{1}{1+a_n} \tag{1}$$

find the first 8 terms of the sequence $\{a_n\}$. Then prove that $\lim_{n\to\infty} a_n = \sqrt{2}$. For this you will need to use part (a). Observe that you provided in (b) the **continued fractions expansion**

$$\sqrt{2} = 1 + \frac{1}{2 + \frac{1}{2 + \dots}}$$

Hint for part (b): First prove that the sequence $\{a_n\}$ converges as follows. Let $b_n = a_{2n}$, $n = 1, 2, \ldots$ and $c_n = a_{2n+1}$, n = 0, 1, etc. It suffices to show that both sequences $\{b_n\}$ and $\{c_n\}$ converge to $\sqrt{2}$, by the above Theorem. Let f(x) = (4+3x)/(3+2x).

- (a) Show that $b_{n+1} = f(b_n)$ and $c_{n+1} = f(c_n)$. In other words, show that $f(a_{n+2}) = f(a_n)$. Simply use Equation (1) twice and take common denominators.
- (b) Show that f(x) is increasing over the positive x-axis and $f(\sqrt{2}) = \sqrt{2}$.
- (c) Show that the sequence $\{c_n\}$ is increasing and bounded above by showing that for x in the interval $0 < x < \sqrt{2}$ the function f satisfies f(x) x > 0 and $f(x) < \sqrt{2}$. Explain your work with complete sentences!
- (d) Show that the sequence $\{b_n\}$ is decreasing and bounded below by showing that if x is larger than $\sqrt{2}$, the function f satisfies f(x) x < 0 and $f(x) > \sqrt{2}$.
- (e) Compute the limit of the sequences $\{b_n\}$ and $\{c_n\}$ using the limit laws and therems.