
Math 132, Fall 2009
Exam 2: Solutions

(1) a) (12 points) Determine for which positive real numbers p, is the following
improper integral convergent, and for which it is divergent. Evaluate the
integral for each value of p, for which it converges, and express its value in
terms of p. Justify your answer and show all your algebraic steps. Hint: Do
not forget to consider the case p = 1 as well.∫ ∞

e

1

(ln(x))px
dx

Let u = ln(x) so du = 1/x dx. Then

∫ ∞
e

1

(ln(x))px
dx = lim

N→∞

∫ N

e

1

(ln(x))px
dx

= lim
N→∞

∫ ln(N)

1

1

up
du

= lim
N→∞

∫ N

1

1

up
du

Case 1: p = 1.

∫ ∞
e

1

(ln(x))px
dx = lim

N→∞

∫ N

1

1

u
du

= lim
N→∞

[ln |u|]N1
= lim

N→∞
(ln(N)− ln(1))

=∞

So, for p = 1, the integral is divergent.
1
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Case 2: p 6= 1.

∫ ∞
e

1

(ln(x))px
dx = lim

N→∞

∫ N

1

1

up
du

= lim
N→∞

u1−p

1− p

∣∣∣∣N
1

=
1

1− p
lim

N→∞

(
N1−p − 1

)
Now

lim
N→∞

N1−p =

{
0 if p > 1
∞ if p < 1

so
1

1− p
lim

N→∞

(
N1−p − 1

)
=

{
1

p−1
if p > 1

∞ if p < 1

Then the integral is divergent for p < 1 and convergent for p > 1.

We have ∫ ∞
e

1

(ln(x))px
dx =

{
1

p−1
if p > 1

divergent if p ≤ 1

b) (10 points) Determine whether the following improper integral converges
or diverges. Evaluate it, showing all your algebraic steps, if it is convergent.
Otherwise, explain why it is divergent.∫ 8

0

1

(x− 8)(2/3)
dx

∫ 8

0

1

(x− 8)2/3
dx = lim

N→8−

∫ N

0

1

(x− 8)2/3
dx

= lim
N→8−

3(x− 8)1/3
∣∣N
0

= lim
N→8−

(
3(N − 8)1/3 − 3(−8)1/3

)
= 6
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(2) (14) For each of the following sequences (not series) determine whether the
sequence converges or diverges. If it converges, find the limit, showing all
your algebraic steps. Otherwise, explain why it diverges.

a) an =

√
2n2 + 3

3n− 1
, n ≥ 1.

lim
n→∞

an = lim
n→∞

√
2n2 + 3

3n− 1

= lim
n→∞

1
n

√
2n2 + 3

1
n
(3n− 1)

= lim
n→∞

√
1
n2 (2n2 + 3)

3− 1
n

= lim
n→∞

√
2 + 3

n2

3− 1
n

=

√
2

3

Then the sequence converges to
√

2/3.

b) an = n sin(n)e−n, n ≥ 1.

Since −1 ≤ sin(n) ≤ 1 and ne−n ≥ 0,

−ne−n ≤ n sin(n)e−n ≤ ne−n

Now,

lim
n→∞

ne−n = lim
x→∞

xe−x

= lim
x→∞

x

ex
→ ∞
∞

= lim
x→∞

1

ex
by L’Hospital’s rule

= 0

Also,
lim

n→∞
−ne−n = − lim

n→∞
ne−n = 0.
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By the Squeeze Theorem,

lim
n→∞

n sin(n)e−n = 0.

Therefore, the sequence converges to 0.

(3) Consider the series
∞∑

n=1

1

n6
.

(a) (9 points) Use the integral test to show that the series is convergent.
Show that all the hypothesis of the test are satisfied. Show all your
algebraic steps. (Credit will not be given for an answer using another
test).

Let f(x) = 1
x6 so that f(n) = 1

n6 for each integer n ≥ 1.

1. f(x) = 1/x6 is continuous for x ≥ 1.

2. f(x) = 1/x6 ≥ 0 for x ≥ 1.

3. f ′(x) = −6x−7 < 0 for x ≥ 1. So, f is decreasing for x ≥ 1.

∫ ∞
1

1

x6
dx = lim

N→∞

∫ N

1

1

x6
dx

= lim
N→∞

−1

5
x−5

∣∣∣∣N
1

= lim
N→∞

−1

5
(N−5 − 1)

=
1

5

Since the integral

∫ ∞
1

1

x6
dx is convergent, by the integral test, the series

∞∑
n=1

1

n6
is also convergent.
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(b) (9 points) Let s be the sum of the series in part 3a. Find the minimal
number n of terms of the series, for which we know that s−sn ≤ 0.00001,
by the error estimate of the integral test. Justify your answer, showing
all your algebraic steps.

From part a, the function f(x) = 1/x6 is continuous, positive and decreasing
for x ≥ 1. Since f(n) = 1/n6, by the error estimate for the integral test,

s− sn ≤
∫ ∞

n

1

x6
dx

Now ∫ ∞
n

1

x6
dx = lim

N→∞

∫ N

n

1

x6
dx

= lim
N→∞

−1

5
x−5

∣∣∣∣N
n

= lim
N→∞

−1

5
(N−5 − n−5)

=
1

5
n−5

So,

s− sn ≤
1

5
n−5

Since we want s− sn ≤ 0.00001,

s− sn ≤
1

5
n−5 ≤ 0.00001

or
1

5
n−5 ≤ 0.00001

n−5 ≤ 0.00005

n5 ≥ 20000

n5 ≥ 200001/5 ≈ 7.25

Therefore, we need at least n = 8 terms to conclude s − sn ≤ 0.00001 from
the error estimate for the integral test.
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(4) (14 points) Consider the series
∞∑

n=1

5

3 + 2n

(a) (5 points) Use the comparison test to show that the series converges.

For each n ≥ 1, 5
3+2n ≥ 0. And

2n ≤ 3 + 2n ⇒ 1

3 + 2n
≤ 1

2n
⇒ 5

3 + 2n
≤ 5

2n

The series
∞∑

n=1

5

2n
=

∞∑
n=1

5

2

(
1

2

)n−1

is a geometric series with r = 1/2 <

1, so it is convergent. Therefore, by the comparison test, the series
∞∑

n=1

5

3 + 2n
is also convergent.

(b) (9 points) The sum s10 of the first 10 terms of the series, rounded to five
decimal digits, is 2.72152. You do not need to verify this. Show that
s− 2.72152 is less than 0.01. Justify your answer!

Solution 1.

For a convergent geometric series

t =
∞∑

n=1

arn−1, r < 1,

the partial sums are

tn =
a(1− rn)

1− r

and the sum is

t =
a

1− r
.
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Let a = 5/2 and r = 1/2 so that

t =
∞∑

n=1

5

2n

=
∞∑

n=1

5

2

(
1

2

)n−1

=
5/2

1− 1/2

= 5

and

tn =
(5/2)(1− (1/2)n)

1− (1/2)
= 5(1− (1/2)n)

Since 5
3+2n ≤ 5

2n for all n, we have

s− sn ≤ t− tn

for all n. Then for n = 10,

s− s10 ≤ t− t10

= 5− 5(1− (1/2)10)

= 5/210

< 0.01
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Solution 2.

Let t =
∞∑

n=1

5

2n
, tn be the partial sums and f(x) = 5/2x.

1. f(x) = 5/2x is continuous for all x.

2. f(x) = 5/2x > 0 for all x.

3. f(x) = 5(2−x) so f ′(x) = −5(ln 2)2−x < 0. Then f is decreasing for all x.

Therefore, by the error estimate for the integral test,

t− tn ≤
∫ ∞

n

5

2x
dx

Since 5
3+2n ≤ 5

2n for all n, we also have

s− sn ≤ t− tn

for all n. So for n = 10,

s− s10 ≤ t− t10

≤
∫ ∞

10

5

2x
dx

= lim
N→∞

∫ N

10

5

2x
dx

= lim
N→∞

∫ N

10

5(2−x) dx

= lim
N→∞

−5

ln 2
2−x

∣∣∣∣N
10

= lim
N→∞

−5

ln 2

(
2−N − 2−10

)
=

5(2−10)

ln 2
< 0.01
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(5) (32 points) Determine whether the following series converge absolutely, con-
verge conditionally, or diverge. Name each test you use and indicate why all
the conditions needed for it to apply actually hold.

(a)
∞∑

n=1

2n + 5

5n3 − 2n2 + 1

Let an = 2n+5
5n3−2n2+1

and bn = 2
5n2 . Then an, bn > 0 and

lim
n→∞

an

bn

= lim
n→∞

2n+5
5n3−2n2+1

2
5n2

= lim
n→∞

2n + 5

5n3 − 2n2 + 1

(
5n2

2

)
= lim

n→∞

10n3 + 25n2

10n3 − 4n2 + 2

= lim
n→∞

1
n3 (10n3 + 25n2)

1
n3 (10n3 − 4n2 + 2)

= lim
n→∞

10 + 25/n

10− 4/n + 2/n3)

= 1.

Since lim
n→∞

an

bn

= 1 is positive and finite, by the limit comparison test

either both series are convergent or both series are divergent. The se-

ries
∑ 1

n2
is a p-series with p = 2 > 1 so it is convergent. Since∑ 2

5n2
=

2

5

∑ 1

n2
, the series

∑ 2

5n2
is also convergent. Thus, the se-

ries
∞∑

n=1

2n + 5

5n3 − 2n2 + 1
is convergent. Since the terms are positive, the

series is absolutely convergent.
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(b)
∞∑

n=1

(−1)n−1

(
4n

n!

)

Let an = (−1)n−1
(

4n

n!

)
. Then

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣
(−1)n

(
4n+1

(n+1)!

)
(−1)n−1

(
4n

n!

)
∣∣∣∣∣∣

= lim
n→∞

(
4n+1

(n + 1)!

)(
n!

4n

)
= lim

n→∞

4

n + 1
= 0

< 1.

Thus, the series is absolutely convergent by the ratio test.

(c)
∞∑

n=1

(−1)n

(
2n2 + n

3n2 + 7n

)2n

Let an = (−1)n
(

2n2+n
3n2+7n

)2n

. Then
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lim
n→∞

n
√
|an| = lim

n→∞
n

√√√√∣∣∣∣∣(−1)n

(
2n2 + n

3n2 + 7n

)2n
∣∣∣∣∣

= lim
n→∞

n

√(
2n2 + n

3n2 + 7n

)2n

= lim
n→∞

(
2n2 + n

3n2 + 7n

)2

=

(
lim

n→∞

2n2 + n

3n2 + 7n

)2

=

(
lim

n→∞

(2n2 + n)/n2

(3n2 + 7n)/n2

)2

=

(
lim

n→∞

2 + 1/n

3 + 7/n

)2

= (2/3)2

= 4/9

< 1.

Thus, the series is absolutely convergent by the root test.

(d)
∞∑

n=1

(−1)n

(
n + 2

n2 + 4

)

This is an alternating series
∞∑

n=1

(−1)nbn with bn = n+2
n2+4

.

1.

lim
n→∞

bn = lim
n→∞

n + 2

n2 + 4

= lim
n→∞

1 + 2/n

n + 4/n

= 0.
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2. Let f(x) = x+2
x2+4

so that f(n) = bn.

f ′(x) =
(x2 + 4)− 2x(x + 2)

(x2 + 4)2

=
−x2 − 4x + 4

(x2 + 4)2

−x2− 4x ≤ −4x ≤ −4 for x ≥ 1. So, −x2− 4x + 4 ≤ 0 for x ≥ 1. Then
f is decreasing for x ≥ 1 which implies bn+1 ≤ bn for n ≥ 1. Hence, by
the alternating series test, the series is convergent.

Let an = (−1)n
(

n+2
n2+4

)
so that |an| = n+2

n2+4
> 0. Let cn = 1

n
> 0. Then

lim
n→∞

|an|
cn

= lim
n→∞

n+2
n2+4

1
n

= lim
n→∞

n2 + 2n

n2 + 4

= lim
n→∞

1 + 2/n

1 + 4/n2

= 1

Since lim
n→∞

an

bn

= 1 is positive and finite, by the limit comparison test

either both series are convergent or both series are divergent. The se-

ries
∑ 1

n
is a p-series with p = 1 so it is divergent. Thus, the series

∞∑
n=1

n + 2

n2 + 4
is also divergent.

Therefore, the series
∞∑

n=1

(−1)n

(
n + 2

n2 + 4

)
is conditionally convergent.


