1 Introduction

Let $R := \mathbb{C}[x]$ be the ring of polynomials. Let $V_{n,d}$ be the vector space of all $n \times n$ matrices with entries in R, such that the degree of each entry is $\leq d$. Clearly, dim $(V_{n,d}) = n^2(d+1)$. Given a matrix $A = (a_{ij}(x))$ in $V_{n,d}$, its characteristic polynomial

$$\operatorname{char}_A(x,\lambda) := \operatorname{det}[A - \lambda I]$$

is a polynomial in two variables. The zero locus of $\operatorname{char}_A(x,\lambda)$ is an affine plane curve, called the *affine spectral curve of* A. Algebraic curves very often arise in other branches of mathematics as spectral curves (see [B2] for examples arising in classical mechanics). In problem 3 below you will prove the following statement, for all $d \geq 1$ and $n \geq 1$. Set $\mathbb{F}_d := \mathbb{P}(\mathcal{O}_{\mathbb{P}^1}(d) \oplus \mathcal{O}_{\mathbb{P}^1})$ and let $p : \mathbb{F}_d \to \mathbb{P}^1$ be the natural morphism. Set $M := \mathcal{O}_{\mathbb{P}^E}(1) \otimes p^* \mathcal{O}_{\mathbb{P}^1}(d)$. Let M^n be the *n*-th tensor power of M.

Theorem 1 There exists a Zariski dense open subset of $V_{n,d}$, consisting of matrices A, whose affine spectral curve is a Zariski open subset of a smooth connected projective curve \tilde{C} of genus $d\left(\frac{n(n-1)}{2}\right) - n + 1$. The curve \tilde{C} is naturally embedded¹ in the ruled surface \mathbb{F}_d as a divisor in the linear system $|M^n|$.

The construction introduces a morphism $char: V_{n,d} \to |M^n|$. In Problem 4 you will describe the fiber $char^{-1}(\widetilde{C})$ in terms of the spectral curve \widetilde{C} .

Set $F := \bigoplus_{i=1}^{n} \mathcal{O}_{\mathbb{P}^{1}}$. Key to the proof is the observation that an element A of $V_{n,d}$ corresponds to a homomorphism of $\mathcal{O}_{\mathbb{P}^{1}}$ -modules $\varphi : F \to F \otimes \mathcal{O}_{\mathbb{P}^{1}}(d)$ as follows. Choose homogeneous coordinates (t_{0}, t_{1}) over \mathbb{P}^{1} . Set $\varphi_{ij}(t_{0}, t_{1}) := t_{0}^{d}a_{ij}(t_{1}/t_{0})$. Then φ_{ij} is a homogeneous polynomial of degree d, hence a section of $H^{0}(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(d))$. We get the isomorphism

$$V_{n,d} \cong \operatorname{Hom}(F, F \otimes \mathcal{O}_{\mathbb{P}^1}(d)),$$

(a_{ij}) \mapsto (φ_{ij}).

N. Hitchin discovered in the 1980's that spectral curves play an important role in the study of *n*-dimensional irreducible complex representations of the fundamental group of a complex projective curve C of positive genus [H]. Hitchin's pairs (F, φ) consist of a rank *n* vector bundle F on C and its "endomorphism" $\varphi : F \to F \otimes \omega_C$ is twisted by the canonical line-bundle ω_C . Hitchin's spectral curves are embedded in the ruled surface $\mathbb{P}[\omega_C \otimes \mathcal{O}_C]$. The genus of Hitchin's spectral curve, which you will calculate below, is equal to half the dimension of the space of representations of the fundamental group.

Terminology: A rank n vector bundle over an algebraic variety X is a locally free \mathcal{O}_X -module of rank n. The following three objects are one and the same: a line-bundle, an invertible sheaf, and a locally free \mathcal{O}_X -module of rank 1.

¹Note that the closure of such a curve in \mathbb{P}^2 has degree nd, so arithmetic genus (nd-1)(nd-2)/2. The latter is larger than the geometric genus by n(d-1)[nd-2]/2. Hence the closure in \mathbb{P}^2 is singular, except possibly when d = 1, or (n, d) = (1, 2).

2 Problems

- 1. Let *C* be a smooth curve, *L* a line bundle on *C* of degree $d, E := L \oplus \mathcal{O}_C$, and $p : \mathbb{P}E \to C$ the corresponding ruled surface. The line sub-bundle *L* of *E* corresponds to a section $\sigma_{\infty} : C \to \mathbb{P}E$, whose image is $\Sigma_{\infty} := \mathbb{P}L$. Let $\sigma_0 : C \to \mathbb{P}E$ be the section corresponding to the line sub-bundle \mathcal{O}_C of *E*, and denote its image by Σ_0 . The fiber of $[\mathbb{P}E \setminus \Sigma_{\infty}]$ over $y \in C$ can be naturally identified with the fiber \overline{L}_y of *L*, and $\sigma_0(y)$ is its zero point. Simply associate to $\ell \in \overline{L}_y$ the point in $\mathbb{P}E$ corresponding to the line $\operatorname{span}_{\mathbb{C}}\{(\ell, 1)\}$ in the fiber of *E*.
 - (a) Show that Σ_0 belongs to the linear system $|(p^*L) \otimes \mathcal{O}_{\mathbb{P}E}(1)|$ and Σ_{∞} belongs to $|\mathcal{O}_{\mathbb{P}E}(1)|$. *Hint: Consider the tautological exact sequence*

$$0 \to \mathcal{O}_{\mathbb{P}E}(-1) \to p^*(E) \to Q_{\mathbb{P}E} \to 0.$$

Show that the section (0,1) of p^*E maps to a non-zero section of $Q_{\mathbb{P}E}$, which vanishes along Σ_0 with multiplicity 1. Then repeat your argument for the section (1,0) of $p^*(E \otimes L^{-1})$.

- (b) Let $D \subset \mathbb{P}E$ be an irreducible curve, which is disjoint from Σ_{∞} . Show that the class [D] of D in $H^2(\mathbb{P}E, \mathbb{Z})$ is n(df+h), where f is the class of the fiber, $h := c_1(\mathcal{O}_{\mathbb{P}E}(1))$, and n := ([D], f). Conclude that the arithmetic genus of Dis $g(D) = d\left(\frac{n(n-1)}{2}\right) + n[g(C)-1] + 1$. Caution: In Proposition III.18 in Beauville's text [B1] his $\mathcal{O}_S(1)$ is our $Q_{\mathbb{P}E}$.
- 2. Keep the notation of problem 1. Set $M := (p^*L) \otimes \mathcal{O}_{\mathbb{P}E}(1)$. Following is an explicit construction of smooth curves in the linear system $|M^n|$, which are disjoint from Σ_{∞} . Choose $b_i \in H^0(C, L^i)$, $0 \leq i \leq n$. Set $b := (b_0, b_1, \ldots, b_n)$ and $a_i := p^*b_i$. Choose a section λ_1 of $H^0(\mathbb{P}E, \mathcal{O}_{\mathbb{P}E}(1))$, with divisor Σ_{∞} (λ_1 is unique, up to a scalar factor). If we identify $\mathcal{O}_{\mathbb{P}E}(1)$ with $\mathcal{O}_{\mathbb{P}E}(\Sigma_{\infty})$, then λ_1 can be the section 1 of the latter. Choose a section λ_0 of $H^0(\mathbb{P}E, M)$, with divisor Σ_0 . We get the section

$$\sigma_b := \sum_{i=0}^n a_i \lambda_1^i \lambda_0^{n-i} \in H^0(\mathbb{P}E, M^n).$$
(1)

Denote by \widetilde{C}_b the divisor in $|M^n|$ corresponding to σ_b .

- (a) Show that if $b_0 \neq 0$, then the intersection $C_b \cap \Sigma_{\infty}$ is empty.
- (b) Show that if $b_0 \neq 0$, $b_i = 0$, for $1 \leq i \leq n 1$, and the divisor of b_n in $|L^n|$ consists of *nd* distinct points of *C*, then the curve \widetilde{C}_b is smooth and irreducible. Note: Points in a linear system, corresponding to smooth divisors, form a Zariski open subset (see Hartshorne's Algebraic Geometry, Ch. I, section 5, Problem 5.15).
- (c) Prove that $H^0(\mathbb{P}E, M^n)$ decomposes as the direct sum $\bigoplus_{i=0}^n \lambda_1^i \lambda_0^{n-i} p^* H^0(\mathbb{P}E, L^i)$. Conclude that every section of $H^0(\mathbb{P}E, M^n)$ is of the form given in Equation (1). Hint: It suffices to establish the direct sum decomposition

$$H^{0}(\mathbb{P}E, M^{k}) = \lambda_{0}H^{0}(\mathbb{P}E, M^{k-1}) \oplus \lambda_{1}^{k}p^{*}H^{0}(C, L^{k}),$$

for all $k \geq 1$. Note first the isomorphism $\sigma_0^*(M) \cong L$, and use it to construct the short exact sequence $0 \to M^{k-1} \xrightarrow{\lambda_0} M^k \longrightarrow (\sigma_0)_*(L^k) \to 0$.

3. Construction of projective spectral curves: Keep the notation of problems 1 and 2. Let F be a locally free coherent sheaf of rank n over $C, \varphi : F \to F \otimes L$ a homomorphism of \mathcal{O}_C -modules, and $p^*(\varphi) : p^*F \to p^*(F \otimes L)$ its pull-back to $\mathbb{P}E$. Set

$$\tilde{\varphi} := [p^*(\varphi) \otimes \lambda_1 - id_F \otimes \lambda_0] : p^*F \longrightarrow (p^*F) \otimes M.$$
(2)

Then the determinant² det($\tilde{\varphi}$) is a section of M^n . The divisor $\tilde{C} \in |M^n|$ of det($\tilde{\varphi}$) is called the **spectral curve** of φ .

- (a) Show that the spectral curve \widetilde{C} of φ is disjoint from Σ_{∞} .
- (b) Set $F := \bigoplus_{i=1}^{n} \mathcal{O}_{\mathbb{P}^{1}}$. Let A be a matrix in $V_{n,d}$ and $\varphi : F \to F \otimes \mathcal{O}_{\mathbb{P}^{1}}(d)$ the associated homomorphism. Write $char_{A}(x,\lambda) = \sum_{i=0}^{n} c_{i}(x)\lambda^{n-i}$. Set $b_{i} := t_{0}^{di}c_{i}(t_{1}/t_{0})$ and let $b = (b_{0}, \ldots, b_{n})$. Show that the spectral curve of φ is equal to the curve \widetilde{C}_{b} constructed in $\mathbb{F}_{d} := \mathbb{P}[\mathcal{O}_{\mathbb{P}^{1}}(d) \oplus \mathcal{O}_{\mathbb{P}^{1}}]$ in problem 2.
- (c) Let $char: V_{n,d} \to |M^n|$ be the morphism sending a matrix A to its spectral curve (a divisor in the linear system on $\mathbb{P}E$). Show that the image of the morphism *char* contains the divisor of every curve considered in Question 2b.
- (d) Prove Theorem 1.
- 4. Keep the notation above.
 - (a) Let \tilde{g} be the genus of the generic spectral curve in Theorem 1. Verify the equality

 $\dim(V_{n,d}) = \tilde{g} + \dim |M^n| + \dim[PGL(n,\mathbb{C})].$

- (b) The group $GL(n, \mathbb{C})$ acts on $V_{n,d}$ by conjugation, and the action factors through $PGL(n, \mathbb{C})$. Show that the morphism $char : V_{n,d} \to |M^n|$ is invariant under the $PGL(n, \mathbb{C})$ -action.
- (c) Show that the co-kernel of the homomorphism $\tilde{\varphi}$, given in Equation (2), is an $\mathcal{O}_{\mathbb{P}E}$ -module, whose set-theoretic support is the spectral curve \tilde{C} . The sheaf $\tilde{F} := \operatorname{coker}(\tilde{\varphi}) \otimes M^{-1}$ is a quotient of p^*F . \tilde{F} is called the **eigen-line-bundle** of φ . Prove the equality $\chi(\tilde{F}) = \chi(F)$, where χ is the sheaf cohomology Euler characteristic (on $\mathbb{P}E$ and on C).
- (d) Recall that $p_*(p^*F) \cong F \otimes (p_*\mathcal{O}_{\widetilde{C}})$, by the projection formula. Let $q: p^*F \to \widetilde{F}$ be the quotient homomorphism. Prove that the composition

$$F \xrightarrow{id_F \otimes 1} F \otimes p_*(\mathcal{O}_{\widetilde{C}}) \cong p_*(p^*F) \xrightarrow{p_*(q)} p_*\widetilde{F}$$

$$\stackrel{n}{\wedge} \tilde{\varphi} : \stackrel{n}{\wedge} (p^*F) \longrightarrow \stackrel{n}{\wedge} [(p^*F) \otimes M] \cong [\stackrel{n}{\wedge} (p^*F)] \otimes M^n.$$

It corresponds to a section $\det(\tilde{\varphi})$ of M^n , since $\bigwedge^n (p^*F)$ is an invertible sheaf.

²If $F = \bigoplus_{i=1}^{n} \mathcal{O}_{C}$ is the trivial vector bundle, then $\tilde{\varphi}$ is an $n \times n$ matrix, whose entries are sections of M. The determinant $\det(\tilde{\varphi})$ is then the usual determinant, where we replace the product of n entries by their tensor product. For a general F, the homomorphism $\tilde{\varphi}$ induces a homomorphism

is an isomorphism. Hint: It suffices to prove injectivity, by part 4c. See Remark 2 for the meaning of this isomorphism.

Remark 2 When \widetilde{C} is smooth, the sheaf \widetilde{F} is a locally free $\mathcal{O}_{\widetilde{C}}$ -module of rank 1, by part 4d. The isomorphism class of \widetilde{F} determines the isomorphism class of the pair (F, φ) , and so the $PGL(n, \mathbb{C})$ -orbit of the matrix $A \in V_{n,d}$, as follows. Let $\mu : \widetilde{F} \to \widetilde{F} \otimes M$ be the homomorphism, given by tensoring with the section λ_0 of M. The push-forward $p_*(\mu)$ is equal³ to the homomorphism $\varphi : F \to F \otimes L$, up to conjugation of φ by an automorphism of F. Set $\widetilde{d} := \chi(\widetilde{F}) + 1 - \widetilde{g}$. The algebraic variety $\operatorname{Pic}^{\widetilde{d}}(\widetilde{C})$, of degree \widetilde{d} line-bundles on \widetilde{C} , is a \widetilde{g} -dimenstional smooth algebraic variety (Its dimension is equal to $h^1(C, \mathcal{O}_C)$, by the discussion in Section I.10 of Beauville's text on the exponential sequence [B1]). Hence, the fiber $char^{-1}(\widetilde{C})$ is an algebraic subset of $V_{n,d}$ of dimension at most $\widetilde{g} + \dim PGL(n, \mathbb{C})$. This must be exactly the dimension of the fiber, by part 4a. See [BNR] for a detailed exposition.

5. Do problems 1, 2, 5, 6 in Chapter III page 37 of Beauville's text [B1].

References

- [B1] Beauville, A.: Complex Algebraic Surfaces. Second Edition. London Math. Soc. Student Texts 34, Cambridge Univ. Press 1996.
- [B2] Beauville, A.: Jacobiennes des courbes spectrales et systèmes hamiltoniens complètement intégrables. Acta Math. 164, 211-235 (1990)
- [BNR] Beauville, A., Narasimhan, M. S., Ramanan, S.: Spectral curves and the generalized theta divisor. J. Reine Angew. Math. 398, 169-179 (1989)
- [H] Hitchin, N.J.: The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc. 55 (1987) 59–126.

³The above statement is due to the fact that a fiber of \widetilde{F} over a point x of \widetilde{C} is naturally identified with the x-eigen-line of the fiber $\overline{F}_{p(x)}$ of F over p(x), provided the eigenvalue x has multiplicity one (i.e., provided x is not a ramification point of $\widetilde{C} \to C$). Furthermore, μ acts on this fiber of \widetilde{F} via tensorization with the corresponding eigenvalue $x \in \overline{L}_{p(x)}$. Finally, the fiber of $p_*\widetilde{F}$ over $y \in C$ is naturally identified with the direct sum of the fibers of \widetilde{F} , over points in $p^{-1}(y)$, provided y is not a branch points of $\widetilde{C} \to C$.