
Complex Algebraic Surfaces, Homework Assignment 3, Spring 2009

1 Introduction

Let R := C[x] be the ring of polynomials. Let Vn,d be the vector space of all n×n matrices
with entries in R, such that the degree of each entry is ≤ d. Clearly, dim(Vn,d) = n2(d+1).
Given a matrix A = (aij(x)) in Vn,d, its characteristic polynomial

charA(x, λ) := det[A − λI]

is a polynomial in two variables. The zero locus of charA(x, λ) is an affine plane curve,
called the affine spectral curve of A. Algebraic curves very often arise in other branches
of mathematics as spectral curves (see [B2] for examples arising in classical mechanics).
In problem 3 below you will prove the following statement, for all d ≥ 1 and n ≥ 1.
Set Fd := P(OP1(d) ⊕ OP1) and let p : Fd → P1 be the natural morphism. Set M :=
OPE(1) ⊗ p∗OP1(d). Let Mn be the n-th tensor power of M .

Theorem 1 There exists a Zariski dense open subset of Vn,d, consisting of matrices A,
whose affine spectral curve is a Zariski open subset of a smooth connected projective

curve C̃ of genus d
(

n(n−1)
2

)
− n + 1. The curve C̃ is naturally embedded1 in the ruled

surface Fd as a divisor in the linear system |Mn|.

The construction introduces a morphism char : Vn,d → |Mn|. In Problem 4 you will

describe the fiber char−1(C̃) in terms of the spectral curve C̃.

Set F := ⊕n
i=1OP1 . Key to the proof is the observation that an element A of Vn,d

corresponds to a homomorphism of OP1-modules ϕ : F → F ⊗OP1(d) as follows. Choose
homogeneous coordinates (t0, t1) over P1. Set ϕij(t0, t1) := td0aij(t1/t0). Then ϕij is a
homogeneous polynomial of degree d, hence a section of H0(P1,OP1(d)). We get the
isomorphism

Vn,d
∼= Hom(F, F ⊗OP1(d)),

(aij) 7→ (ϕij).

N. Hitchin discovered in the 1980’s that spectral curves play an important role in the
study of n-dimensional irreducible complex representations of the fundamental group of
a complex projective curve C of positive genus [H]. Hitchin’s pairs (F, ϕ) consist of a
rank n vector bundle F on C and its “endomorphism” ϕ : F → F ⊗ωC is twisted by the
canonical line-bundle ωC . Hitchin’s spectral curves are embedded in the ruled surface
P[ωC ⊗ OC ]. The genus of Hitchin’s spectral curve, which you will calculate below, is
equal to half the dimension of the space of representations of the fundamental group.

Terminology: A rank n vector bundle over an algebraic variety X is a locally free
OX -module of rank n. The following three objects are one and the same: a line-bundle,
an invertible sheaf, and a locally free OX -module of rank 1.

1Note that the closure of such a curve in P2 has degree nd, so arithmetic genus (nd − 1)(nd − 2)/2.
The latter is larger than the geometric genus by n(d− 1)[nd− 2]/2. Hence the closure in P2 is singular,
except possibly when d = 1, or (n, d) = (1, 2).
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2 Problems

1. Let C be a smooth curve, L a line bundle on C of degree d, E := L ⊕ OC ,
and p : PE → C the corresponding ruled surface. The line sub-bundle L of
E corresponds to a section σ∞ : C → PE, whose image is Σ∞ := PL. Let
σ0 : C → PE be the section corresponding to the line sub-bundle OC of E, and
denote its image by Σ0. The fiber of [PE \ Σ∞] over y ∈ C can be naturally
identified with the fiber Ly of L, and σ0(y) is its zero point. Simply associate to
ℓ ∈ Ly the point in PE corresponding to the line spanC{(ℓ, 1)} in the fiber of E.

(a) Show that Σ0 belongs to the linear system |(p∗L) ⊗OPE(1)| and Σ∞ belongs
to |OPE(1)|. Hint: Consider the tautological exact sequence

0 → OPE(−1) → p∗(E) → QPE → 0.

Show that the section (0, 1) of p∗E maps to a non-zero section of QPE, which
vanishes along Σ0 with multiplicity 1. Then repeat your argument for the
section (1, 0) of p∗(E ⊗ L−1).

(b) Let D ⊂ PE be an irreducible curve, which is disjoint from Σ∞. Show that
the class [D] of D in H2(PE, Z) is n(df +h), where f is the class of the fiber,
h := c1(OPE(1)), and n := ([D], f). Conclude that the arithmetic genus of D

is g(D) = d

(
n(n − 1)

2

)
+ n[g(C) − 1] + 1.

Caution: In Proposition III.18 in Beauville’s text [B1] his OS(1) is our QPE.

2. Keep the notation of problem 1. Set M := (p∗L)⊗OPE(1). Following is an explicit
construction of smooth curves in the linear system |Mn|, which are disjoint from
Σ∞. Choose bi ∈ H0(C, Li), 0 ≤ i ≤ n. Set b := (b0, b1, . . . , bn) and ai := p∗bi.
Choose a section λ1 of H0(PE,OPE(1)), with divisor Σ∞ (λ1 is unique, up to a
scalar factor). If we identify OPE(1) with OPE(Σ∞), then λ1 can be the section
1 of the latter. Choose a section λ0 of H0(PE, M), with divisor Σ0. We get the
section

σb :=
n∑

i=0

aiλ
i
1λ

n−i
0 ∈ H0(PE, Mn). (1)

Denote by C̃b the divisor in |Mn| corresponding to σb.

(a) Show that if b0 6= 0, then the intersection C̃b ∩ Σ∞ is empty.

(b) Show that if b0 6= 0, bi = 0, for 1 ≤ i ≤ n − 1, and the divisor of bn in |Ln|

consists of nd distinct points of C, then the curve C̃b is smooth and irreducible.
Note: Points in a linear system, corresponding to smooth divisors, form a
Zariski open subset (see Hartshorne’s Algebraic Geometry, Ch. I, section 5,
Problem 5.15).

(c) Prove that H0(PE, Mn) decomposes as the direct sum ⊕n
i=0λ

i
1λ

n−i
0 p∗H0(PE, Li).

Conclude that every section of H0(PE, Mn) is of the form given in Equa-
tion (1). Hint: It suffices to establish the direct sum decomposition

H0(PE, Mk) = λ0H
0(PE, Mk−1) ⊕ λk

1p
∗H0(C, Lk),
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for all k ≥ 1. Note first the isomorphism σ∗

0(M) ∼= L, and use it to construct

the short exact sequence 0 → Mk−1 λ0−→ Mk −→ (σ0)∗(L
k) → 0.

3. Construction of projective spectral curves: Keep the notation of problems
1 and 2. Let F be a locally free coherent sheaf of rank n over C, ϕ : F → F ⊗L a
homomorphism of OC-modules, and p∗(ϕ) : p∗F → p∗(F ⊗L) its pull-back to PE.
Set

ϕ̃ := [p∗(ϕ) ⊗ λ1 − idF ⊗ λ0] : p∗F −→ (p∗F ) ⊗ M. (2)

Then the determinant2 det(ϕ̃) is a section of Mn. The divisor C̃ ∈ |Mn| of det(ϕ̃)
is called the spectral curve of ϕ.

(a) Show that the spectral curve C̃ of ϕ is disjoint from Σ∞.

(b) Set F := ⊕n
i=1OP1. Let A be a matrix in Vn,d and ϕ : F → F ⊗ OP1(d)

the associated homomorphism. Write charA(x, λ) =
∑n

i=0 ci(x)λn−i. Set
bi := tdi

0 ci(t1/t0) and let b = (b0, . . . , bn). Show that the spectral curve of ϕ is

equal to the curve C̃b constructed in Fd := P[OP1(d) ⊕OP1] in problem 2.

(c) Let char : Vn,d → |Mn| be the morphism sending a matrix A to its spectral
curve (a divisor in the linear system on PE). Show that the image of the
morphism char contains the divisor of every curve considered in Question 2b.

(d) Prove Theorem 1.

4. Keep the notation above.

(a) Let g̃ be the genus of the generic spectral curve in Theorem 1. Verify the
equality

dim(Vn,d) = g̃ + dim |Mn| + dim[PGL(n, C)].

(b) The group GL(n, C) acts on Vn,d by conjugation, and the action factors
through PGL(n, C). Show that the morphism char : Vn,d → |Mn| is invariant
under the PGL(n, C)-action.

(c) Show that the co-kernel of the homomorphism ϕ̃, given in Equation (2), is an

OPE-module, whose set-theoretic support is the spectral curve C̃. The sheaf
F̃ := coker(ϕ̃)⊗M−1 is a quotient of p∗F . F̃ is called the eigen-line-bundle

of ϕ. Prove the equality χ(F̃ ) = χ(F ), where χ is the sheaf cohomology Euler
characteristic (on PE and on C).

(d) Recall that p∗(p
∗F ) ∼= F ⊗ (p∗O eC

), by the projection formula. Let q : p∗F →

F̃ be the quotient homomorphism. Prove that the composition

F
idF⊗1
−→ F ⊗ p∗(O eC) ∼= p∗(p

∗F )
p∗(q)
−→ p∗F̃

2If F = ⊕n
i=1OC is the trivial vector bundle, then ϕ̃ is an n×n matrix, whose entries are sections of

M . The determinant det(ϕ̃) is then the usual determinant, where we replace the product of n entries
by their tensor product. For a general F , the homomorphism ϕ̃ induces a homomorphism

n
∧ ϕ̃ :

n
∧ (p∗F ) −→

n
∧ [(p∗F ) ⊗ M ] ∼= [

n
∧ (p∗F )] ⊗ Mn.

It corresponds to a section det(ϕ̃) of Mn, since
n
∧ (p∗F ) is an invertible sheaf.
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is an isomorphism. Hint: It suffices to prove injectivity, by part 4c. See
Remark 2 for the meaning of this isomorphism.

Remark 2 When C̃ is smooth, the sheaf F̃ is a locally free O eC-module of rank 1,

by part 4d. The isomorphism class of F̃ determines the isomorphism class of the
pair (F, ϕ), and so the PGL(n, C)-orbit of the matrix A ∈ Vn,d, as follows. Let

µ : F̃ → F̃ ⊗ M be the homomorphism, given by tensoring with the section λ0 of
M . The push-forward p∗(µ) is equal3 to the homomorphism ϕ : F → F ⊗L, up to

conjugation of ϕ by an automorphism of F . Set d̃ := χ(F̃ ) + 1− g̃. The algebraic

variety Picd̃(C̃), of degree d̃ line-bundles on C̃, is a g̃-dimenstional smooth algebraic
variety (Its dimension is equal to h1(C,OC), by the discussion in Section I.10 of

Beauville’s text on the exponential sequence [B1]). Hence, the fiber char−1(C̃) is
an algebraic subset of Vn,d of dimension at most g̃ +dim PGL(n, C). This must be
exacltly the dimension of the fiber, by part 4a. See [BNR] for a detailed exposition.

5. Do problems 1, 2, 5, 6 in Chapter III page 37 of Beauville’s text [B1].
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3The above statement is due to the fact that a fiber of F̃ over a point x of C̃ is naturally identified
with the x-eigen-line of the fiber F p(x) of F over p(x), provided the eigenvalue x has multiplicity one

(i.e., provided x is not a ramification point of C̃ → C). Furthermore, µ acts on this fiber of F̃ via

tensorization with the corresponding eigenvalue x ∈ Lp(x). Finally, the fiber of p∗F̃ over y ∈ C is

naturally identified with the direct sum of the fibers of F̃ , over points in p−1(y), provided y is not a

branch points of C̃ → C.
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