1 Introduction

Let $R:=\mathbb{C}[x]$ be the ring of polynomials. Let $V_{n, d}$ be the vector space of all $n \times n$ matrices with entries in R, such that the degree of each entry is $\leq d$. Clearly, $\operatorname{dim}\left(V_{n, d}\right)=n^{2}(d+1)$. Given a matrix $A=\left(a_{i j}(x)\right)$ in $V_{n, d}$, its characteristic polynomial

$$
\operatorname{char}_{A}(x, \lambda):=\operatorname{det}[A-\lambda I]
$$

is a polynomial in two variables. The zero locus of $\operatorname{char}_{A}(x, \lambda)$ is an affine plane curve, called the affine spectral curve of A. Algebraic curves very often arise in other branches of mathematics as spectral curves (see [B2] for examples arising in classical mechanics). In problem 3 below you will prove the following statement, for all $d \geq 1$ and $n \geq 1$. Set $\mathbb{F}_{d}:=\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}}(d) \oplus \mathcal{O}_{\mathbb{P}^{1}}\right)$ and let $p: \mathbb{F}_{d} \rightarrow \mathbb{P}^{1}$ be the natural morphism. Set $M:=$ $\mathcal{O}_{\mathbb{P} E}(1) \otimes p^{*} \mathcal{O}_{\mathbb{P}^{1}}(d)$. Let M^{n} be the n-th tensor power of M.

Theorem 1 There exists a Zariski dense open subset of $V_{n, d}$, consisting of matrices A, whose affine spectral curve is a Zariski open subset of a smooth connected projective curve \widetilde{C} of genus $d\left(\frac{n(n-1)}{2}\right)-n+1$. The curve \widetilde{C} is naturally embedded ${ }^{1}$ in the ruled surface \mathbb{F}_{d} as a divisor in the linear system $\left|M^{n}\right|$.

The construction introduces a morphism char : $V_{n, d} \rightarrow\left|M^{n}\right|$. In Problem 4 you will describe the fiber $\operatorname{char}^{-1}(\widetilde{C})$ in terms of the spectral curve \widetilde{C}.

Set $F:=\oplus_{i=1}^{n} \mathcal{O}_{\mathbb{P}^{1}}$. Key to the proof is the observation that an element A of $V_{n, d}$ corresponds to a homomorphism of $\mathcal{O}_{\mathbb{P}^{1}}$-modules $\varphi: F \rightarrow F \otimes \mathcal{O}_{\mathbb{P}^{1}}(d)$ as follows. Choose homogeneous coordinates $\left(t_{0}, t_{1}\right)$ over \mathbb{P}^{1}. Set $\varphi_{i j}\left(t_{0}, t_{1}\right):=t_{0}^{d} a_{i j}\left(t_{1} / t_{0}\right)$. Then $\varphi_{i j}$ is a homogeneous polynomial of degree d, hence a section of $H^{0}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(d)\right)$. We get the isomorphism

$$
\begin{aligned}
V_{n, d} & \cong \operatorname{Hom}\left(F, F \otimes \mathcal{O}_{\mathbb{P}^{1}}(d)\right) \\
\left(a_{i j}\right) & \mapsto\left(\varphi_{i j}\right)
\end{aligned}
$$

N. Hitchin discovered in the 1980's that spectral curves play an important role in the study of n-dimensional irreducible complex representations of the fundamental group of a complex projective curve C of positive genus $[\mathrm{H}]$. Hitchin's pairs (F, φ) consist of a rank n vector bundle F on C and its "endomorphism" $\varphi: F \rightarrow F \otimes \omega_{C}$ is twisted by the canonical line-bundle ω_{C}. Hitchin's spectral curves are embedded in the ruled surface $\mathbb{P}\left[\omega_{C} \otimes \mathcal{O}_{C}\right]$. The genus of Hitchin's spectral curve, which you will calculate below, is equal to half the dimension of the space of representations of the fundamental group.

Terminology: A rank n vector bundle over an algebraic variety X is a locally free \mathcal{O}_{X}-module of rank n. The following three objects are one and the same: a line-bundle, an invertible sheaf, and a locally free \mathcal{O}_{X}-module of rank 1 .

[^0]
2 Problems

1. Let C be a smooth curve, L a line bundle on C of degree $d, E:=L \oplus \mathcal{O}_{C}$, and $p: \mathbb{P} E \rightarrow C$ the corresponding ruled surface. The line sub-bundle L of E corresponds to a section $\sigma_{\infty}: C \rightarrow \mathbb{P} E$, whose image is $\Sigma_{\infty}:=\mathbb{P} L$. Let $\sigma_{0}: C \rightarrow \mathbb{P} E$ be the section corresponding to the line sub-bundle \mathcal{O}_{C} of E, and denote its image by Σ_{0}. The fiber of $\left[\mathbb{P} E \backslash \Sigma_{\infty}\right]$ over $y \in C$ can be naturally identified with the fiber \bar{L}_{y} of L, and $\sigma_{0}(y)$ is its zero point. Simply associate to $\ell \in \bar{L}_{y}$ the point in $\mathbb{P} E$ corresponding to the line $\operatorname{span}_{\mathbb{C}}\{(\ell, 1)\}$ in the fiber of E.
(a) Show that Σ_{0} belongs to the linear system $\left|\left(p^{*} L\right) \otimes \mathcal{O}_{\mathbb{P} E}(1)\right|$ and Σ_{∞} belongs to $\left|\mathcal{O}_{\mathbb{P} E}(1)\right|$. Hint: Consider the tautological exact sequence

$$
0 \rightarrow \mathcal{O}_{\mathbb{P} E}(-1) \rightarrow p^{*}(E) \rightarrow Q_{\mathbb{P} E} \rightarrow 0
$$

Show that the section $(0,1)$ of $p^{*} E$ maps to a non-zero section of $Q_{\mathbb{P} E}$, which vanishes along Σ_{0} with multiplicity 1. Then repeat your argument for the section $(1,0)$ of $p^{*}\left(E \otimes L^{-1}\right)$.
(b) Let $D \subset \mathbb{P} E$ be an irreducible curve, which is disjoint from Σ_{∞}. Show that the class $[D]$ of D in $H^{2}(\mathbb{P} E, \mathbb{Z})$ is $n(d f+h)$, where f is the class of the fiber, $h:=c_{1}\left(\mathcal{O}_{\mathbb{P} E}(1)\right)$, and $n:=([D], f)$. Conclude that the arithmetic genus of D is $\quad g(D)=d\left(\frac{n(n-1)}{2}\right)+n[g(C)-1]+1$.
Caution: In Proposition III. 18 in Beauville's text [B1] his $\mathcal{O}_{S}(1)$ is our $Q_{\mathbb{P E}}$.
2. Keep the notation of problem 1 . Set $M:=\left(p^{*} L\right) \otimes \mathcal{O}_{\mathbb{P} E}(1)$. Following is an explicit construction of smooth curves in the linear system $\left|M^{n}\right|$, which are disjoint from Σ_{∞}. Choose $b_{i} \in H^{0}\left(C, L^{i}\right), 0 \leq i \leq n$. Set $b:=\left(b_{0}, b_{1}, \ldots, b_{n}\right)$ and $a_{i}:=p^{*} b_{i}$. Choose a section λ_{1} of $H^{0}\left(\mathbb{P} E, \mathcal{O}_{\mathbb{P} E}(1)\right)$, with divisor $\Sigma_{\infty}\left(\lambda_{1}\right.$ is unique, up to a scalar factor). If we identify $\mathcal{O}_{\mathbb{P} E}(1)$ with $\mathcal{O}_{\mathbb{P} E}\left(\Sigma_{\infty}\right)$, then λ_{1} can be the section 1 of the latter. Choose a section λ_{0} of $H^{0}(\mathbb{P} E, M)$, with divisor Σ_{0}. We get the section

$$
\begin{equation*}
\sigma_{b}:=\sum_{i=0}^{n} a_{i} \lambda_{1}^{i} \lambda_{0}^{n-i} \quad \in \quad H^{0}\left(\mathbb{P} E, M^{n}\right) \tag{1}
\end{equation*}
$$

Denote by \widetilde{C}_{b} the divisor in $\left|M^{n}\right|$ corresponding to σ_{b}.
(a) Show that if $b_{0} \neq 0$, then the intersection $\widetilde{C}_{b} \cap \Sigma_{\infty}$ is empty.
(b) Show that if $b_{0} \neq 0, b_{i}=0$, for $1 \leq i \leq n-1$, and the divisor of b_{n} in $\left|L^{n}\right|$ consists of $n d$ distinct points of C, then the curve \widetilde{C}_{b} is smooth and irreducible. Note: Points in a linear system, corresponding to smooth divisors, form a Zariski open subset (see Hartshorne's Algebraic Geometry, Ch. I, section 5, Problem 5.15).
(c) Prove that $H^{0}\left(\mathbb{P} E, M^{n}\right)$ decomposes as the direct sum $\oplus_{i=0}^{n} \lambda_{1}^{i} \lambda_{0}^{n-i} p^{*} H^{0}\left(\mathbb{P} E, L^{i}\right)$. Conclude that every section of $H^{0}\left(\mathbb{P} E, M^{n}\right)$ is of the form given in Equation (1). Hint: It suffices to establish the direct sum decomposition

$$
H^{0}\left(\mathbb{P} E, M^{k}\right)=\lambda_{0} H^{0}\left(\mathbb{P} E, M^{k-1}\right) \oplus \lambda_{1}^{k} p^{*} H^{0}\left(C, L^{k}\right)
$$

for all $k \geq 1$. Note first the isomorphism $\sigma_{0}^{*}(M) \cong L$, and use it to construct the short exact sequence $0 \rightarrow M^{k-1} \xrightarrow{\lambda_{0}} M^{k} \longrightarrow\left(\sigma_{0}\right)_{*}\left(L^{k}\right) \rightarrow 0$.
3. Construction of projective spectral curves: Keep the notation of problems 1 and 2 . Let F be a locally free coherent sheaf of rank n over $C, \varphi: F \rightarrow F \otimes L$ a homomorphism of \mathcal{O}_{C}-modules, and $p^{*}(\varphi): p^{*} F \rightarrow p^{*}(F \otimes L)$ its pull-back to $\mathbb{P} E$. Set

$$
\begin{equation*}
\tilde{\varphi}:=\left[p^{*}(\varphi) \otimes \lambda_{1}-i d_{F} \otimes \lambda_{0}\right]: p^{*} F \quad \longrightarrow \quad\left(p^{*} F\right) \otimes M . \tag{2}
\end{equation*}
$$

Then the determinant ${ }^{2} \operatorname{det}(\tilde{\varphi})$ is a section of M^{n}. The divisor $\widetilde{C} \in\left|M^{n}\right|$ of $\operatorname{det}(\tilde{\varphi})$ is called the spectral curve of φ.
(a) Show that the spectral curve \widetilde{C} of φ is disjoint from Σ_{∞}.
(b) Set $F:=\oplus_{i=1}^{n} \mathcal{O}_{\mathbb{P}^{1}}$. Let A be a matrix in $V_{n, d}$ and $\varphi: F \rightarrow F \otimes \mathcal{O}_{\mathbb{P}^{1}}(d)$ the associated homomorphism. Write $\operatorname{char}_{A}(x, \lambda)=\sum_{i=0}^{n} c_{i}(x) \lambda^{n-i}$. Set $b_{i}:=t_{0}^{d i} c_{i}\left(t_{1} / t_{0}\right)$ and let $b=\left(b_{0}, \ldots, b_{n}\right)$. Show that the spectral curve of φ is equal to the curve \widetilde{C}_{b} constructed in $\mathbb{F}_{d}:=\mathbb{P}\left[\mathcal{O}_{\mathbb{P}^{1}}(d) \oplus \mathcal{O}_{\mathbb{P}^{1}}\right]$ in problem 2.
(c) Let char: $V_{n, d} \rightarrow\left|M^{n}\right|$ be the morphism sending a matrix A to its spectral curve (a divisor in the linear system on $\mathbb{P} E$). Show that the image of the morphism char contains the divisor of every curve considered in Question 2b.
(d) Prove Theorem 1.
4. Keep the notation above.
(a) Let \tilde{g} be the genus of the generic spectral curve in Theorem 1 . Verify the equality

$$
\operatorname{dim}\left(V_{n, d}\right)=\tilde{g}+\operatorname{dim}\left|M^{n}\right|+\operatorname{dim}[P G L(n, \mathbb{C})]
$$

(b) The group $G L(n, \mathbb{C})$ acts on $V_{n, d}$ by conjugation, and the action factors through $\operatorname{PGL}(n, \mathbb{C})$. Show that the morphism char : $V_{n, d} \rightarrow\left|M^{n}\right|$ is invariant under the $P G L(n, \mathbb{C})$-action.
(c) Show that the co-kernel of the homomorphism $\tilde{\varphi}$, given in Equation (2), is an $\mathcal{O}_{\mathbb{P} E}$-module, whose set-theoretic support is the spectral curve \widetilde{C}. The sheaf $\widetilde{F}:=\operatorname{coker}(\tilde{\varphi}) \otimes M^{-1}$ is a quotient of $p^{*} F . \widetilde{F}$ is called the eigen-line-bundle of φ. Prove the equality $\chi(\widetilde{F})=\chi(F)$, where χ is the sheaf cohomology Euler characteristic (on $\mathbb{P} E$ and on C).
(d) Recall that $p_{*}\left(p^{*} F\right) \cong F \otimes\left(p_{*} \mathcal{O}_{\widetilde{C}}\right)$, by the projection formula. Let $q: p^{*} F \rightarrow$ \widetilde{F} be the quotient homomorphism. Prove that the composition

$$
F \xrightarrow{i d_{F} \otimes 1} F \otimes p_{*}\left(\mathcal{O}_{\widetilde{C}}\right) \cong p_{*}\left(p^{*} F\right) \xrightarrow{p_{*}(q)} p_{*} \widetilde{F}
$$

[^1]is an isomorphism. Hint: It suffices to prove injectivity, by part 4c. See Remark 2 for the meaning of this isomorphism.

Remark 2 When \widetilde{C} is smooth, the sheaf \widetilde{F} is a locally free $\mathcal{O}_{\widetilde{C}}$-module of rank 1 , by part 4 d . The isomorphism class of \widetilde{F} determines the isomorphism class of the pair (F, φ), and so the $P G L(n, \mathbb{C})$-orbit of the matrix $A \in V_{n, d}$, as follows. Let $\mu: \widetilde{F} \rightarrow \widetilde{F} \otimes M$ be the homomorphism, given by tensoring with the section λ_{0} of M. The push-forward $p_{*}(\mu)$ is equal ${ }^{3}$ to the homomorphism $\varphi: F \rightarrow F \otimes L$, up to conjugation of φ by an automorphism of F. Set $\tilde{d}:=\chi(\widetilde{F})+1-\tilde{g}$. The algebraic variety $\operatorname{Pic}^{\tilde{d}}(\widetilde{C})$, of degree \tilde{d} line-bundles on \widetilde{C}, is a \tilde{g}-dimenstional smooth algebraic variety (Its dimension is equal to $h^{1}\left(C, \mathcal{O}_{C}\right)$, by the discussion in Section I. 10 of Beauville's text on the exponential sequence [B1]). Hence, the fiber $\operatorname{char}^{-1}(\widetilde{C})$ is an algebraic subset of $V_{n, d}$ of dimension at most $\widetilde{g}+\operatorname{dim} P G L(n, \mathbb{C})$. This must be exacltly the dimension of the fiber, by part 4 a . See $[\mathrm{BNR}]$ for a detailed exposition.
5. Do problems 1, 2, 5, 6 in Chapter III page 37 of Beauville's text [B1].

References

[B1] Beauville, A.: Complex Algebraic Surfaces. Second Edition. London Math. Soc. Student Texts 34, Cambridge Univ. Press 1996.
[B2] Beauville, A.: Jacobiennes des courbes spectrales et systèmes hamiltoniens complètement intégrables. Acta Math. 164, 211-235 (1990)
[BNR] Beauville, A., Narasimhan, M. S., Ramanan, S.: Spectral curves and the generalized theta divisor. J. Reine Angew. Math. 398, 169-179 (1989)
[H] Hitchin, N.J.: The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc. 55 (1987) 59-126.

[^2]
[^0]: ${ }^{1}$ Note that the closure of such a curve in \mathbb{P}^{2} has degree $n d$, so arithmetic genus $(n d-1)(n d-2) / 2$. The latter is larger than the geometric genus by $n(d-1)[n d-2] / 2$. Hence the closure in \mathbb{P}^{2} is singular, except possibly when $d=1$, or $(n, d)=(1,2)$.

[^1]: ${ }^{2}$ If $F=\oplus_{i=1}^{n} \mathcal{O}_{C}$ is the trivial vector bundle, then $\tilde{\varphi}$ is an $n \times n$ matrix, whose entries are sections of M. The determinant $\operatorname{det}(\tilde{\varphi})$ is then the usual determinant, where we replace the product of n entries by their tensor product. For a general F, the homomorphism $\tilde{\varphi}$ induces a homomorphism

 $$
 \wedge_{\wedge}^{n} \tilde{\varphi}: \wedge^{n}\left(p^{*} F\right) \longrightarrow \wedge^{n}\left[\left(p^{*} F\right) \otimes M\right] \cong\left[\wedge^{n}\left(p^{*} F\right)\right] \otimes M^{n}
 $$

 It corresponds to a section $\operatorname{det}(\tilde{\varphi})$ of M^{n}, since $\wedge^{n}\left(p^{*} F\right)$ is an invertible sheaf.

[^2]: ${ }^{3}$ The above statement is due to the fact that a fiber of \widetilde{F} over a point x of \widetilde{C} is naturally identified with the x-eigen-line of the fiber $\bar{F}_{p(x)}$ of F over $p(x)$, provided the eigenvalue x has multiplicity one (i.e., provided x is not a ramification point of $\widetilde{C} \rightarrow C$). Furthermore, μ acts on this fiber of \widetilde{F} via tensorization with the corresponding eigenvalue $x \in \bar{L}_{p(x)}$. Finally, the fiber of $p_{*} \widetilde{F}$ over $y \in C$ is naturally identified with the direct sum of the fibers of \widetilde{F}, over points in $p^{-1}(y)$, provided y is not a branch points of $\widetilde{C} \rightarrow C$.

