Complex Algebraic Surfaces, Homework Assignment 1, Spring 2009

The field k below is assumed algebraically closed.

- Sketch the following curves in the affine plane A²: A := V(y − x²), B := V(y² − x³ + x), C := V(y² − x³), D := V(y² − x³ − x²). Let P := (0,0). Compute the six intersection numbers at P, of the six pairs of curves, and compare each to the product of the two multiplicities of the curves at P.
- 2. Prove the bilinearity property (6) of the local intersection multiplicity $I(P, C \cap D)$ for two affine plane curves (not necessarily irreducible, nor reduced, but rather subschemes of pure dimension 1). In other words, let $F, G_1, G_2 \in k[x, y]$ be polynomials of positive degree. Set $G := G_1G_2$. Assume that the algebraic subsets V(F) and V(G) do not have any common irreducible component. Prove the equality

$$I(P, F \cap G) = I(P, F \cap G_1) + I(P, F \cap G_2).$$

Hint: Let \mathcal{O}_P be the local ring of \mathbb{A}^2 at P. Prove that the sequence

$$0 \to \mathcal{O}_P/(F, G_2) \xrightarrow{\psi} \mathcal{O}_P/(F, G) \longrightarrow \mathcal{O}_P/(F, G_1) \to 0$$

is short exact, where $\psi(z + (F, G_2)) := G_1 z + (F, G_1 G_2)$.

Remark: Observe that your argument goes through for pure one dimensional subschemes C and D over any smooth quasi-projective surface. (Beauville's definition of the local intersection multiplicity considers only reduced curves, but in the quation above we allow G_1 and G_2 to have commpon irreducible components, with arbitrary multiplicities, and F may have irreducible components with arbitrary multiplicities).

3. Let X be a smooth surface, C, D curves on X, which do not have common irreducible components, and $P \in C$ a smooth point. Let $\mathcal{O}_{X,P}$ be the local ring of X at P, $\mathcal{O}_{C,P}$ the local ring of C at P, $f \in \mathcal{O}_{X,P}$ a local equation of D, and \overline{f} its image in $\mathcal{O}_{C,P}$. Use the fact that localization is an exact functor to prove the following equality:

$$m_P(C \cap D) = \operatorname{ord}_p(\overline{f}).$$

Conclude that when C is smooth and irreducible, the restriction of the invertible sheaf $\mathcal{O}_X(D)$ to C is isomorphic to $\mathcal{O}_C\left(\sum_{P\in C} m_P(C\cap D)P\right)$. (Compare, but do not use, Beauville, Lemma I.6).

- 4. (Hartshorne, Proposition 6.5. The proof is easy, so try to do it yourself and then check your answer). Let X be a smooth quasi-projective variety, and $Z \subset X$ a closed algebraic subset. Set $U := X \setminus Z$. Prove the following statements.
 - (a) The homomorphism $\rho : \operatorname{Pic}(X) \to \operatorname{Pic}(U)$, defined by $\sum n_i Y_i \mapsto \sum_i n_i (Y_i \cap U)$, is surjective. The divisor $Y_i \cap U$ above is the zero divisor of U, if the intersection is empty.

- (b) If the codimension of Z in X is ≥ 2 , then ρ is an isomorphism.
- (c) If Z is an irreducible subset of codimension 1, then the sequence

$$\mathbb{Z} \to \operatorname{Pic}(X) \xrightarrow{\rho} \operatorname{Pic}(U) \to 0$$

is exact, where the left homomorphism sends 1 to Z.

5. Let X be a quasi-projective variety and $n \ge 1$. Show that $\operatorname{Pic}(X \times \mathbb{P}^n)$ is isomorphic to $\operatorname{Pic}(X) \times \mathbb{Z}$.

Hints: i) Recall Hartshorne, Proposition II.6.6: Let $X \subset \mathbb{P}^n$ be a quasi-projective variety. Then the homomorphism

$$\operatorname{Pic}(X) \to \operatorname{Pic}(X \times \mathbb{A}^1),$$

sending $\sum n_i Y_i$ to $\sum n_i (Y_i \times \mathbb{A}^1)$, is an isomorphism. ii) Let $H \subset \mathbb{P}^n$ be a hyperplane, set $U := \mathbb{P}^n \setminus H$, and prove that the following sequence is short exact.

$$0 \to \mathbb{Z} \to \operatorname{Pic}(X \times \mathbb{P}^n) \xrightarrow{\rho} \operatorname{Pic}(X \times U) \to 0.$$

- 6. Let $Q \subset \mathbb{P}^3$ be a smooth quadric surface. Prove that $\operatorname{Pic}(Q)$ is isomorphic to $\mathbb{Z} \oplus \mathbb{Z}$. *Hint:* Use question 5.
- 7. Let C be a smooth projective curve of genus g. Set $X := C \times C$, and let $\Delta \subset X$ be the (reduced) diagonal curve $\{(P, P) : P \in C\}$. Show that the class of Δ in $\operatorname{Pic}(X)$ belongs to the image of the homomorphism

$$\operatorname{Pic}(C) \times \operatorname{Pic}(C) \longrightarrow \operatorname{Pic}(X)$$
$$(D_1, D_2) \mapsto (D_1 \times C) + (C \times D_2),$$

if and only if g = 0.

Hint: Assume that $\Delta \sim (D_1 \times C) + (C \times D_2)$, $D_i \in \text{Pic}(C)$. Use Theorem I.4 in Beauville's text to show that $\deg(D_i) = 1$. Then show that there exist two distinct points $P, Q \in C$, such that the divisors P and Q in Div(C) are both linearly equivalent to D_1 .

8. Let C be a smooth projective curve of genus one. Fix a point $P_0 \in C$. Consider the map $a : C \to \operatorname{Pic}(C)$, sending $P \in C$ to $P - P_0$. Let deg : $\operatorname{Pic}(C) \to \mathbb{Z}$ be the degree map, sending $\sum_{P \in C} n_P \cdot P$ to $\sum_{P \in C} n_P$. When the genus of C is 1, we have shown in class, using the Riemann-Roch Theorem, that the image of a is equal to the kernel of deg. In particular, the choice of the point P_0 endows C with a group structure. Recall also that the genus of a smooth curve of degree d in \mathbb{P}^2 is (d-1)(d-2)/2.

Let C be $V(zy^2 - x(x - z)(x - \lambda z)) \subset \mathbb{P}^2$, where $\lambda \in \mathbb{C} \setminus \{0, 1\}$. Set $P_0 := (0, 1, 0)$. Given a curve D in \mathbb{P}^2 , which does not contain C, denote by $C \cap D$ the divisor $\sum_{P \in C} m_P(C \cap D)P$ in Div(C).

- (a) Set H := V(z). Show that $m_{P_0}(H \cap C) = 3$. Conclude that the divisor class of $3P_0$ generates the image of the restriction homomorphism $\operatorname{Pic}(\mathbb{P}^2) \to \operatorname{Pic}(C)$.
- (b) Let P, Q, and R be points of C (not necessarily distinct). Show that a(P) + a(Q) + a(R) = 0 in Pic(C), if and only if there exists a line L in \mathbb{P}^2 , such that $(L \cap C) = P + Q + R$. The points P, Q, and R are said in this case to be *co-linear*.
- (c) Let $L_{P,Q}$ be the unique line in \mathbb{P}^2 , such that $L_{P,Q} \cap C = P + Q + R$, for some point $R \in C$. (If P = Q, then $L_{P,Q}$ is the tangent line to C at P). Show that a(P) + a(Q) = a(S), if and only if P_0 , S, and R are co-linear, where $L_{P,Q} \cap C = P + Q + R$. Drow a picture.
- (d) Give a geometric interpretation for the inversion $P \mapsto a^{-1}(-a(P))$.