## Homework 5

1. Read Section 2.3 in Huybrechts' book.
2. Show that $\mathcal{O}_{\mathbb{P}^{n}}(d)$ restricts to a projective line in $\mathbb{P}^{n}$ as a line bundle of degree $d$ (Definition 2.3.29).
3. Do the following problems from Huybrechts, Section 2.3 page 89: 2.3.4, 2.3.5, 2.3.7, 2.3.8 (see hint below), 2.3.10 (see hint below).
4. Hint for 2.3.8: Let $Y$ be a smooth hypersurface in a complex manifold $X$ and $p$ a point of $Y$. Use Lemma 2.3.22 to conclude that we have a short exact sequence of stalks at $p$

$$
0 \rightarrow \mathcal{O}_{X}(-Y)_{p} \rightarrow \mathcal{O}_{X, p} \rightarrow \mathcal{O}_{Y, p} \rightarrow 0
$$

If, in addition, $\operatorname{dim}_{\mathbb{C}}(X)=2$, and $f, g \in \mathcal{O}_{X, p}$ are germs of holomorphic functions, with $g$ a local equation of $Y$, show that $\operatorname{ord}_{p}\left(\left.f\right|_{Y}\right)=\operatorname{dim}_{\mathbb{C}}\left[\mathcal{O}_{X, p} /(f, g)\right]$, where $(f, g)$ is the ideal genereted by $f$ and $g$. Note that the right hand side of the latter equation is symmetric in $f$ and $g$. If $X$ is a compact complex surface and $Y, Z$ two irreducible smooth divisors (complex curves) on $X$, conclude that $\operatorname{deg}\left(\left.\mathcal{O}_{X}(Y)\right|_{Z}\right)=\operatorname{deg}\left(\left.\mathcal{O}_{X}(Z)\right|_{Y}\right)$.
5. Hint for 2.3.10: Do the problem rigorously using algebraic methods and then give it a geometric description using Bezout's Theorem (Exercise 2.3.8) and intersections of lines through the point $x$ with the degree 2 curve $C$. For the algebraic case where $x$ does not belong to $C$ show first that we may choose, without loss of generality, the point $x$ to be any point not on $C$. Indeed, the canonical codomain of $\varphi_{\mathcal{O}_{\mathbb{P}^{1}}(2)}$ is $\mathbb{P}\left[H^{0}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(2)\right)^{*}\right]$ and once we identify $\mathbb{P}^{2}$ with $\mathbb{P}\left[H^{0}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(2)\right)^{*}\right]=$ $\mathbb{P}\left[\operatorname{span}\left\{z_{0}^{2}, z_{1} z_{2}, z_{2}^{2}\right\}^{*}\right]$, the automorphism group $P G L\left[\operatorname{span}\left\{z_{0}, z_{1}\right\}^{*}\right] \cong P G L(2, \mathbb{C})$ of $\mathbb{P}^{1}$ gets identifies with the subgroup of the automorphism group $P G L\left[H^{0}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(2)\right)^{*}\right]$ of $\mathbb{P}^{2}$ leaving the curve $C$ invariant (the image in $P G L\left[H^{0}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(2)\right)^{*}\right] \cong P G L(3)$ of the isometry group of $H^{0}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(2)\right)^{*}$ preserving the quadratic polynomial $Q$ defining $C$ ). This is a concrete version of the isomorphism $P G L(2, \mathbb{C}) \cong$ $\operatorname{PSO}(3, \mathbb{C})$. Now, $\operatorname{PSO}(3, \mathbb{C})$ acts transitively on the open set $\mathbb{P}^{2} \backslash V(Q)$.

