Hint for problem 3.3.6 page 143 in Huybrechts' book

In Section 2.1 page 57 the space of n-dimensional complex tori \mathbb{C}^{n} / Λ was described by varying the lattice $\Lambda \subset \mathbb{C}^{n}$. We showed that two complex tori $X_{1}=\mathbb{C}^{n} / \Lambda_{1}$ and $X_{2}=\mathbb{C}^{n} / \Lambda_{2}$ are isomorphic, if and only if there exists a linear automorphism of \mathbb{C}^{n} mapping Λ_{1} onto Λ_{2}. Thus, we can normalize the lattice Λ to be the span of the columns of an $n \times 2 n$ matrix $\Pi:=(Z, I)$, where I is the $n \times n$ identity matrix and Z is an $n \times n$ matrix with $\operatorname{Im}(Z)$ invertible. Denote by \mathcal{M}_{n} the space of $n \times n$ complex matrices Z with invertible imaginary part. Denote by Λ_{Z} the lattice spanned over \mathbb{Z} by the columns of (Z, I). Write a $2 n \times 2 n$ invertible matrix G with integers entries in the form $G=\left(\begin{array}{ll}G_{1,1} & G_{1,2} \\ G_{2,1} & G_{2,2}\end{array}\right)$ with $n \times n$ blocks $G_{i, j}$. It is easy to show that the isomorphism class of an n-dimensional compact complex torus $X=\mathbb{C}^{n} / \Lambda_{Z}$ is represented by the $G L(2 n, \mathbb{Z})$-orbit

$$
\left\{\left(Z G_{1,2}+G_{2,2}\right)^{-1}\left(Z G_{1,1}+G_{2,1}\right): G \in G L(2 n, \mathbb{Z})\right\}
$$

in \mathcal{M}_{n}.
An element ω in $H^{2}(X, \mathbb{Z})$ corresponds to an alternating \mathbb{Z}-valued bilinear form on the lattice Λ. Denote by $\beta:=\left\{\lambda_{1}, \ldots, \lambda_{2 n}\right\}$ the basis of Λ consisting of columns of $\Pi:=(Z, I)$. Then ω is given by an anti-symmetric $2 n \times 2 n$ matrix with integer entries of the form $\left(\begin{array}{cc}A & B \\ -B^{t} & C\end{array}\right)$, with $A=-A^{t}$ and $C=-C^{t}$.

1. Show that an element $\omega \in H^{2}(X, \mathbb{Z})$ belongs to $H^{1,1}(X, \mathbb{Z})$, if and only if

$$
\begin{equation*}
A-B Z+Z^{t} B^{t}+\left(Z^{t}\right) C Z=0 \tag{1}
\end{equation*}
$$

Hint: Recall that ω is of type $(1,1)$, if and only if

$$
\begin{equation*}
\omega\left(i v_{1}, i v_{2}\right)=\omega\left(v_{1}, v_{2}\right) \tag{2}
\end{equation*}
$$

for all $v_{1}, v_{2} \in \mathbb{C}^{n}$. Let $J: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be the complex structure (multiplication by i). Let R be the $2 n \times 2 n$ matrix of J in the basis β of \mathbb{C}^{n} as a vector space over \mathbb{R}. Then (2) is equivalent to

$$
R^{t}\left(\begin{array}{cc}
A & B \tag{3}\\
-B^{t} & C
\end{array}\right) R=\left(\begin{array}{cc}
A & B \\
-B^{t} & C
\end{array}\right)
$$

The coordinate linear transformation []$_{\beta}: \mathbb{C}^{n} \rightarrow \mathbb{R}^{2 n}$ satisfies $\left[i \lambda_{j}\right]_{\beta}=R_{j}$, where R_{j} is the j-th column of R. Now left multiplication $\Pi: \mathbb{R}^{2 n} \rightarrow \mathbb{C}^{n}$ is the inverse of []$_{\beta}$. Hence, $i \lambda_{j}=\Pi R_{j}$ and so $i \Pi=\Pi R$. Conclude that

$$
\left(\begin{array}{cc}
i I & 0 \tag{4}\\
0 & -i I
\end{array}\right)\binom{\Pi}{\bar{\Pi}}=\binom{\Pi}{\bar{\Pi}} R .
$$

Now show that (1) is equivalent to the conjunction of (3) and (4). Note that $J^{-1}=-J$ and that $\binom{\Pi}{\bar{\Pi}}$ is invertible.
2. When $n=2$ and $A=\left(\begin{array}{cc}0 & a \\ -a & 0\end{array}\right), B=\left(\begin{array}{ll}b & d \\ e & f\end{array}\right)$, and $C=\left(\begin{array}{cc}0 & c \\ -c & 0\end{array}\right)$, $a, b, c, d, e, f \in \mathbb{Z}$, conclude that ω belongs to the Neron-Severi group of X, if and only if the period matrix (Z, I) satisfies the quadratic equation

$$
a+e z_{1,1}-b z_{1,2}+f z_{2,1}-d z_{2,2}+c \operatorname{det}(Z)=0
$$

3. Assume $n=2$. Show that if $X=\mathbb{C}^{n} / \Lambda_{Z}$ and the Neron Severi group $N S(X)$ is non-trivial, then Z belongs to a countable union of co-dimensional 1 complex hypersurfaces in \mathcal{M}_{n}. Conclude that for a general point Z of \mathcal{M}_{n}, the complex torus $X=\mathbb{C}^{n} / \Lambda_{Z}$ has a trivial Neron-Severi group.
