Hint for problem 1.2.1

1. Given a compatible almost complex structure (CACS), construct an orthonormal basis $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$, such that $I\left(v_{1}\right)=v_{2}$ and $I\left(v_{3}\right)=v_{4}$. Conclude that any two CACS are conjugate under the orthogonal group $O(V)$, and the conjugacy class has at most two connected components.
2. Show that the stabilizer of a CACS I in $S O(V)$ is four dimensional, by computing its tangent space at the identity as a subspace of the Lie algebra so $(4, \mathbb{R})$ of skewsymmetric matrices. Conclude that each $S O(V)$ orbit is two dimensional.
3. Let $\mathbb{H}:=\{a 1+b I+c J+d K: a, b, c, d \in \mathbb{R}\}$ be the quaternions with inner product given by $\left(q_{1}, q_{2}\right):=q_{1} \bar{q}_{2}$, where $I^{2}=J^{2}=K^{2}=-1, I J=K$, and conjugation is given by

$$
\overline{a+b I+c J+d K}=a-b I-c J-d K .
$$

Let Σ be the set of unit purely imaginary quaternions

$$
\Sigma:=\left\{a I+b J+c K: a^{2}+b^{2}+c^{2}=1\right\} .
$$

Given $q \in \Sigma$, let $L_{q}: \mathbb{H} \rightarrow \mathbb{H}$ be left multiplication by q and let $R_{q}: \mathbb{H} \rightarrow \mathbb{H}$ be right multiplication by q. Show that both L_{q} and R_{q} are compatible almost complex structures and that the two embeddings of Σ in $O(\mathbb{H})$ are disjoint.

Remark: The Pfaffian $\operatorname{Pf}(M)$ of a $2 n \times 2 n$ skew-symmetric matrix M is an invariant polynomial with respect to the $S O(2 n)$ conjugation action satisfying $\operatorname{Pf}(M)^{2}=\operatorname{det}(M)$. For 4×4 matrices it is given by

$$
\operatorname{Pf}\left(\begin{array}{cccc}
0 & a & b & c \\
-a & 0 & d & e \\
-b & -d & 0 & f \\
-c & -e & -f & 0
\end{array}\right)=a f-b e+d c
$$

The matrix of a $C A C S$ with respect to an orthonormal basis is skew-symmetric and so its Pfaffian is an invariant of each connected component of the $O(V)$-conjugacy class.

