AN APPENDIX TO: THE BEAUVILLE-BOGOMOLOV CLASS AS A CHARACTERISTIC CLASS

EYAL MARKMAN

Contents

1. Introduction 1
2. Singular moduli spaces and their deformations 1
3. O’Grady’s results on the structure of the normal cone 3
4. Extracting the data \(\{ \mathbb{P}V, \mathbb{P}V^* \} \) from the normal cone 3

References 4

1. Introduction

Let \(X \) be any compact Kähler manifold deformation equivalent to the Hilbert scheme \(S^{[n]} \) of length \(n \) subschemes on a K3 surface \(S \), \(n \geq 2 \). Such a manifold will be called below of \(K3^{[n]} \)-type. Let \(\Delta \subset X \times X \) be the diagonal. The paper “The Beauville-Bogomolov class as a characteristic class” carries out a construction of a \(\mathbb{P}^{2n-3} \)-bundle \(\mathbb{P}V \) over \(\tilde{\Sigma} := [X \times X] \setminus \Delta \), which corresponds to a slope-stable twisted reflexive sheaf over \(X \times X \), with monodromy-invariant characteristic classes (see [M]). We first constructed \(\mathbb{P}V \) when \(X \) is a moduli space of sheaves. We then used Verbitsky’s theory of hyperholomorphic sheaves in order to deform the construction of \(\mathbb{P}V \) to every \(X \) as above.

In this appendix we provide another geometric interpretation of the above construction. Let \(\Sigma \) be the complement of the diagonal in the second symmetric product of \(X \). Then \(\tilde{\Sigma} \) is the universal cover of \(\Sigma \). Now \(\Sigma \) is expected to be a stratum of the singular locus of a \(\mathbb{Q} \)-factorial compact holomorphic symplectic variety \(Y \), at least when \(X \) is a sufficiently “small” deformation of \(S^{[n]} \) (Conjecture 2.2). We reconstruct the projective bundle \(\mathbb{P}V \) over \(\tilde{\Sigma} \) from the geometry of the projectivized normal cone of \(\Sigma \) in \(Y \). Conjecture 2.2, if true, would thus provide an alternative construction of the pair \((X, \mathbb{P}V) \) constructed in [M], for \(X \) in the local Kuranishi deformation space of \(S^{[n]} \).

2. Singular moduli spaces and their deformations

Let \(S \) be a projective K3 surface with a cyclic Picard group generated by an ample line-bundle \(H \) of degree 2. Let \(K_{\text{top}}S \) be the topological \(K \) group
of S and denote by $v \in K_{\text{top}}S$ the class of the ideal sheaf of a length n subsheaf of S, so that the moduli space $M_H(v)$, of H stable coherent sheaves of class v, is simply the Hilbert scheme $S^{[n]}$. Assume that $n \geq 2$. The equivalence class (also known as the S-equivalence class), of an H-semistable sheaf, is the isomorphism class of the associated graded sheaf, with respect to the Harder-Narasimhan filtration. Let $M_H(2v)$ be the moduli space of equivalence classes of H-semistable sheaves over S, with class $2v$. If $n \geq 3$, then $M_H(2v)$ is an irreducible locally factorial singular projective symplectic variety with terminal singularities, which does not admit a crepant resolution. [KLS]. When $n = 2$ the moduli space $M_H(2v)$ is Q-factorial and it does admit a crepant resolution [O’G, LS]. The singularities of $M_H(2v)$ determine a stratification

$$M_H(2v) \supset M(2v)_{\text{sing}} \supset M(v),$$

$M(2v)_{\text{sing}}$ is isomorphic to the second symmetric product $\text{Sym}^2 M(v)$, and $M(v) \hookrightarrow \text{Sym}^2 M(v)$ is the diagonal embedding. A point in $M(2v)_{\text{sing}}$ corresponds to the S-equivalence class of the direct sum $I_{Z_1} \oplus I_{Z_2}$ of two ideal sheaves, with Z_j, $j = 1, 2$, a length n subscheme of S.

Let $\mathcal{Y} \to \text{Def}(M_H(2v))$ be the semi-universal family over the local Kuranishi deformation space of $M_H(2v)$. Namikawa studied the deformation theory of Q-factorial projective symplectic varieties with terminal singularities [Nam1, Nam2, Nam3]. His results imply that $\text{Def}(M_H(2v))$ is smooth ([Nam1, Theorem 2.5]). Furthermore, the semi-universal family \mathcal{Y} is locally trivial [Nam3]. So deformations of $M_H(2v)$ remain singular and the deformation $p : \mathcal{Y}_{\text{sing}} \to \text{Def}(M_H(2v))$ of their singular loci is locally trivial over $\text{Def}(M_H(2v))$, for $n \geq 3$. Local triviality means that given a point $y \in \mathcal{Y}_{\text{sing}}$, there exists an analytic open neighborhoods U of y in $\mathcal{Y}_{\text{sing}}$, U_1 of $p(y)$ in $\text{Def}(M_H(2v))$, and U_2 of y in the fiber $\mathcal{Y}_{\text{sing}}$ over $p(y)$, and an isomorphism $U \cong U_1 \times U_2$, which conjugates p to the projection onto U_1.

Corollary 2.1. The fiber Y, over a generic point of $\text{Def}(M_H(2v))$, is singular, with a stratification

$$Y \supset Y_{\text{sing}} \supset X,$$

where the reduced singular locus Y_{sing} is isomorphic to $\text{Sym}^2(X)$, X is smooth of $K^3[n]$-type, and the inclusion $X \subset Y_{\text{sing}}$ is the diagonal embedding.

Proof. Simply use Namikawa’s local triviality twice. Once for the semi-universal family $\mathcal{Y} \to \text{Def}(M_H(2v))$, in order to conclude the flatness of $p : \mathcal{Y}_{\text{sing}} \to \text{Def}(M_H(2v))$, and once to conclude the local triviality of p. □

Corollary 2.1 gives rise to a natural morphism of local deformation spaces

$$\text{Def}(M_H(2v)) \longrightarrow \text{Def}(M_H(v)),$$

sending Y to the smallest stratum of its singular locus. When $n \geq 3$, both moduli spaces are smooth and 23-dimensional. Recall that $M_H(v) = S^{[n]}$.
Conjecture 2.2. The morphism (2.2) is surjective, for a generic polarized K3 surface \((S, H)\).

Note that it would suffice to prove that the differential of the morphism (2.2) is invertible, a calculation we have not carried out.

3. O’Grady’s results on the structure of the normal cone

Set
\[\Sigma := \mathcal{M}(2v)_{\text{sing}} \setminus \mathcal{M}(v), \]
\[\widetilde{\Sigma} := \left[\mathcal{M}(v) \times \mathcal{M}(v) \right] \setminus \Delta_{\mathcal{M}(v)} \].

Then \(\widetilde{\Sigma} \to \Sigma \) is the universal cover and we let \(\tau : \widetilde{\Sigma} \to \widetilde{\Sigma} \) denotes its Galois involution. Let \(\mathcal{E} \) be the universal ideal sheaf over \(S \times \mathcal{M}_H(v) \). Denote by \(\pi_{ij} \) the projection from \(\mathcal{M}_H(v) \times S \times \mathcal{M}_H(v) \) onto the product of the \(i \)-th and \(j \)-th factors. Denote by \(V \) the restriction to \(\widetilde{\Sigma} \) of the sheaf \(\mathcal{E} \times \mathcal{E} \)
\begin{equation}
\mathcal{E} \times \mathcal{E} (\pi_{12}^* \mathcal{E}, \pi_{23}^* \mathcal{E}) .
\end{equation}

Then \(V \) is a locally free sheaf of rank \(2n - 2 \). Let \(\tilde{q} \in \text{Sym}^2[V \oplus V^*] \) be the symmetric bilinear form \(\tilde{q}(x, y) = y(x) \) and \(C_{\Sigma} \subset \mathbb{P}V \times \mathbb{P}V^* \) the subscheme defined by \(\tilde{q} = 0 \). A fiber of \(C_{\Sigma} \), over \(\sigma \in \tilde{\Sigma} \), is the incidence divisor
\begin{equation}
Q \subset \left[\mathbb{P}^{2n-3} \times (\mathbb{P}^{2n-3})^* \right].
\end{equation}

When \(n = 2 \), \(\mathbb{P}V \) is a \(\mathbb{P}^1 \)-bundle, hence self-dual, and \(C_{\Sigma} \) is the graph of the isomorphism \(\mathbb{P}V \cong \mathbb{P}V^* \).

The pullback \(\tau^* V \) is isomorphic to \(V^* \). Thus, the vector bundle \(V \oplus V^* \), the quadratic form \(\tilde{q} \), the fiber product \(\mathbb{P}V \times \mathbb{P}V^* \), and its subvariety \(C_{\Sigma} \), descend to a vector bundle over \(\Sigma \) with a quadratic form \(q \), a \(\mathbb{P}^{2n-3} \times (\mathbb{P}^{2n-3})^* \)-bundle \(\mathcal{P} \) over \(\Sigma \), and a subvariety
\[C_{\Sigma} \subset \mathcal{P} . \]

Proposition 3.1. ([O’G], Proposition 1.4.1 and Theorem 1.2.1) \(C_{\Sigma} \) is isomorphic to the projectivized normal cone of \(\Sigma \) in \(\mathcal{M}_H(2v) \).

4. Extracting the data \(\{ \mathbb{P}V, \mathbb{P}V^* \} \) from the normal cone

Assume that conjecture 2.2 holds. Let \(X \) be an irreducible holomorphic symplectic manifold, parametrized by a point \([X] \) in \(\text{Def}(S^{[n]}) \) in the image of a point \([Y] \) in \(\text{Def}(\mathcal{M}_H(2v)) \) via the morphism (2.2). Let \(\Sigma := [\text{Sym}^2 X] \setminus \Delta \) and \(\tilde{\Sigma} := [X \times X] \setminus \Delta \) be the complements of the diagonals. Then \(\Sigma \) is a stratum in \(Y_{\text{sing}} \) and the projectivized normal cone \(C_{\Sigma} \), of \(\Sigma \) in \(Y \), is a \(\mathcal{Q} \)-bundle, where \(\mathcal{Q} \) is the incidence divisor (3.2), by Corollary 2.1.

If \(n = 2 \), the pullback of \(C_{\Sigma} \) to \(\tilde{\Sigma} \) is the \(\mathbb{P}^1 \)-bundle we are looking for\(^1\). Assume \(n \geq 3 \). Then the relative Picard sheaf \(\text{Pic}(C_{\Sigma}/\Sigma) \) is a \(\mathbb{Z} \oplus \mathbb{Z} \) local

\(^1\)In the case \(n = 2 \) one need not consider the whole of \(\text{Def}(\mathcal{M}_H(2v)) \), but rather the divisor along which the fiber \(Y \) of the semi-universal family remains singular.
system, and it has a canonical double section, whose value at a point \(\sigma \in \Sigma \) is the pair of two generators of the effective cone of the fiber \(Q \) of \(C_\Sigma \) over \(\sigma \). The double section is connected, as it is connected in the case \(\Sigma = M(2v)_{\text{sing}} \setminus M(v) \). Hence, the double section is isomorphic to the universal cover \(\tilde{\Sigma} \) of \(\Sigma \). Let \(C_{\tilde{\Sigma}} \) be the fiber product \(C_\Sigma \times_{\Sigma} \tilde{\Sigma} \). Then \(\text{Pic}(C_{\tilde{\Sigma}}/\tilde{\Sigma}) \) has an unordered pair of two sections \(\{L_1, L_2\} \) (labeled by a choice of identification of \(\tilde{\Sigma} \) with the double section), such that \(L_i \) “restricts” to the fiber \(Q \) of \(C_{\tilde{\Sigma}} \to \tilde{\Sigma} \) as the line bundle \(\mathcal{O}_Q(1,0) \) or \(\mathcal{O}_Q(0,1) \) of the incidence divisor (3.2). Each \(L_i \) determines a \(\mathbb{P}^{2n-3} \)-bundle \(P_i \) over \(\tilde{\Sigma} \) (of linear systems along the fibers), and a morphism \(\eta_i : C_{\tilde{\Sigma}} \to \mathbb{P}_i^* \). The morphisms \(\eta_1, \eta_2 \) are the two rulings of \(C_{\tilde{\Sigma}} \). The embedding

\[
(\eta_1, \eta_2) : C_{\tilde{\Sigma}} \to \mathbb{P}_1^* \times \mathbb{P}_2^*
\]

determines an isomorphism \(\mathbb{P}_1^* \cong \mathbb{P}_2^* \). When \(X = M(v) \cong S[n] \) and \(Y = \mathcal{M}_H(2v) \), the dual pair \(\{\mathbb{P}_1, \mathbb{P}_2\} \) is precisely the pair \(\{\mathbb{P}V, \mathbb{P}V^*\} \), where \(V \) is given in (3.1).

References

