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Functional Analysis and Applications

Lecture notes for MATH 797fn

Luc Rey-Bellet
University of Massachusetts Amherst

The functional analysis, usually understood as the linear theory, can be described as

Extension of linear algebra to infinite-dimensional
vector spaces using topological concepts

The theory arised gradually from many applications such as solving boundary value problems, solving
partial differential equations such as the wave equation or the Schrödinger equation of quantum mechanics,
etc... Such problems lead to a comprehensive analysis of function spaces and their structure and of linear
(an non-linear) maps acting on function spaces. These concepts were then reformulated in abstract form in
the modern theory of functional analysis. Functional analytic tools are used in a wide range of applications,
some of which we will discuss in this class.
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Chapter 1

Metric Spaces

1.1 Definitions and examples
One can introduce a topology on some set M by specifying a metric on M .

Definition 1.1. A map d(·, ·) : M ×M → R is called a metric on the set M if for all ξ, η, ζ ∈M we have

1. (positive definite) d(ξ, η) ≥ 0 and d(ξ, η) = 0 if and if ξ = η.

2. (symmetric) d(ξ, η) = d(η, ξ).

3. (triangle inequality) d(ξ, η) ≤ d(ξ, ζ) + d(ζ, ξ)

Example 1.2. Some examples of metric spaces

1. M = C[a, b] with d(f, g) =
∫ b
a
|f(t)− g(t)|p dt with 0 < p <∞.

2. M = C[a, b] with d(f, g) = maxt∈[a,b] |f(t)− g(t)|

3. For any measure space (X,µ), M = Lp(X,µ) with d(f, g) = ‖f − g‖p with 1 ≤ p ≤ ∞.

4. Let M be the set of all infinite sequences ξ = (x1, x2, · · · ) with xi ∈ C. Then for η = (y1, y2, · · · )

d(ξ, η) =

∞∑
i=1

(
1

2

)i |xi − yi|
1 + |xi − yi|

(1.1)

defines a metric on M .

5. Let M be the set of all infinite sequences of 0 and 1: M = {ξ = (x1, x2, · · · ) ; xi ∈ {0, 1}}. Then

d(ξ, η) =

∞∑
i=1

(xi + yi (mod)2)

= number of indices j at which ξ and η differ (1.2)

defines a metric on M and is called the Hamming distance and is used in coding theory.
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4 CHAPTER 1. METRIC SPACES

6. A metric can be defined on arbitrary space M (without any linear structure), for example set

d(ξ, η) =

{
0 if ξ = η
1 if ξ 6= η

(1.3)

and d is called the discrete metric and M a discrete space.

In a metric space (X, d) ones introduces naturally a concept of convergence as well as a topology.

Definition 1.3. 1. A sequence {ξi} is called a Cauchy sequence if for any ε > 0 there exists N so that
d(ξi, ξj) < ε for all i, j ≥ N (or shorter if limi,j→∞ d(ξi, ξj) = 0).

2. We say that ξ is the limit of the sequence {ξi} (or that ξi converges to ξ, or that limi→∞ ξi = ξ) if
limi→∞ d(ξi, ξ) = 0.

Definition 1.4. A metric space (M,d) is called complete if every Cauchy sequence {ξi} has a limit ξ ∈M .

Theorem 1.5. The following metric spaces are complete.

1. Let M be a finite dimensional vector space with (arbitrary norm) ‖ · ‖ and metric d(ξ, η) = ‖ξ − η‖.

2. M = Lp(X,µ) with d(f, g) = ‖f − g‖p

3. M = C[a, b] with d(f, g) = maxt∈[a,b] |f(t)− g(t)|.

Proof. Consult your class notes for Math 624.

Definition 1.6. A brief reminder on some topological concepts.

• In a metric space (X, d)
Br(ξ) := {η : d(ξ, η) < r} (1.4)

is the open ball of radius r around ξ and

Br(ξ) := {η : d(ξ, η) ≤ r} (1.5)

is the closed ball of radius r around ξ

• A set N ⊂M is called bounded if there exist a ball B such that N ⊂ B.

• A set N ⊂ M is called open if for every point ξ ∈ N there exists a open ball around ξ contained in
N .

• A set N ⊂M is called closed if M \N is open.

• For a set N ⊂ M the set N is the smallest closed set which contains N . The set N is called the
closure of N .

• A set N ⊂M is called dense (in M ) if N = M .

• A set K ⊂ M is called compact (in M ) if every sequence in K contains a convergent subsequence
with limit in K.
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1.2 Banach fixed point theorem
Problem 1.7. As a motivation imagine we want to solve the fixed point problem

F (ξ) = ξ (1.6)

where F : M →M is some map (not necessarily linear).

The idea of the solution is simple. Pick a point ξ0 and define the sequence ξn inductively by

ξn+1 = F (ξn) . (1.7)

If this sequence converges to ξ and F is continuous we have then

ξ = lim
n→∞

ξn+1 = lim
n→∞

F (ξn) = F ( lim
n→∞

ξn) = F (ξ) (1.8)

and so ξ is a solution of the fixed point problem.
We have the following

Theorem 1.8. (Banach Fixed Point Theorem) Let (M,d) be a complete metric space and let F : M →M
be a contraction, i.e., there exists q ∈ [0, 1) such that for all ξ, η ∈M

d(F (ξ), F (η)) ≤ qd(ξ, η) . (1.9)

Then F has exactly one fixed point ξ = limn F
n(ξ0) for arbitrary ξ0.

Proof. We have
d(ξn+1, ξn) ≤ qd(F (ξn), F (ξn−1)) ≤ · · · ≤ qnd(ξ1, ξ0) . (1.10)

Using that q < 1 we have then

d(ξn+m, ξn) ≤
m∑
k=1

d(ξn+k, ξn+k−1)

≤
m∑
k=1

qn+k−1d(ξ1, ξ0)

≤ qn

1− q
d(ξ1, ξ0) . (1.11)

Since (M,d) is complete, ξ = limn→∞ ξn exists.
To show that ξ is a fixed point we note that

d(f(ξ), ξ) ≤ d(f(ξ), f(ξn)) + d(ξn+1, ξ) ≤ qd(ξ, ξn) + d(ξ, ξn+1) (1.12)

and the right hand side can be made arbitrarily small for n large enough.
Finally to show uniqueness, if ξ and η are two fixed points then

d(ξ, η) = d(F (ξ), F (η)) ≤ qd(ξ, η) < d(ξ, η) . (1.13)

and this implies ξ = η.

Let us give a few applications of this theorem.
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Example 1.9. Let us try to solve the set of linear equation

n∑
i=1

aikxk = zk (1.14)

where zk, k = 1, · · · , n are given and xk, k = 1, · · · , n are unknown. We rewrite it as a fixed point equation

xi =

n∑
k=1

(aik + δik)xk − zi (1.15)

or
ξ = F (ξ) (1.16)

where ξ = (x1, · · · , xn) ∈ Rn (or Cn) and

F (ξ) = Cξ + ζ (1.17)

where ζ = (z1, · · · , zn) and C is the matrix with cik = aik + δik.
To apply the Banach fixed point theorem we pick a metric on Cn such that (Cn, d) is complete. For

example we can take d(ξ, η) = ‖ξ − η‖p with p ≥ 1 and then we have

d(F (ξ), F (η)) = ‖C(ξ − η)‖p (1.18)

For example if p = 1 we have

‖Cξ‖1 =
∑
i

∣∣∣∣∣∑
k

cikxk

∣∣∣∣∣ ≤ ∑
i

∑
k

|cik||xk| ≤ max
k

∑
I

|cik|︸ ︷︷ ︸
:=q1

‖ξ‖1 . (1.19)

If we can find a norm such that ‖C(ξ)‖ ≤ q‖ξ‖ then the equation (1.9) has a unique solution.
The fixed point equation has the form ξ = Cξ + ζ or (1 − C)ξ = ζ which gives formally using a

Neumann series (which we will justify later)

ξ = (1− C)−1ζ = (1 + C + C2 + · · · )ζ . (1.20)

Note also that the Banach fixed point algorithms gives the sequence

ξn+1 = Cξn + ζ (1.21)

and ξ is the limit of ξn independent of the starting point ξ0. This iteration is easy to solve and gives

ξn = Cnξ0 +

n−1∑
k=1

Ckζ (1.22)

and thus, formally, we find

ξ = lim
n→∞

Cnξ0 +

∞∑
k=1

Ckζ (1.23)

The second term is exactly the Neumann series and the first term should go to 0.
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Example 1.10. (Fredholm integral equation) A very similar argument applies to the equation

f(t) = λ

∫ b

a

k(t, s)f(s) ds+ h(t) (1.24)

where we use the metric space C[a, b] with the maximum metric d(f, g) =
∫ b
a
|f(t) − g(t)|dt. This is a

fixed point equation f = F (f) where

F (f)(t) = h(t) + λ

∫ b

a

k(t, s)f(s) ds . (1.25)

We have

d(F (f), F (g)) = max
t∈[a,b]

|F (f)(t)− F (g)(t)| = max
t∈[a,b]

∣∣∣∣∣
∫ b

a

λk(t, s)(f(s)− g(s)) ds

∣∣∣∣∣
≤ |λ|

(
max
t∈[a,b]

∫ b

a

|k(t, s)| ds

)
d(f, g) . (1.26)

From the Banach fixed point theorem we deduce that the Fredholm integral equation has a unique solution
provided

|λ| ≤

(
max
t∈[a,b]

∫ b

a

|k(t, s)| ds

)−1

(1.27)

Example 1.11. (Solving differential equations) Consider an ordinary differential equation (initial value
problem)

dx(t)

dt
= f(x(t)) , x(a) = x0 (1.28)

where f : R→ R. It is easy to see that x(t) is solution of (1.28) on the interval [a, b] if and only if we have
for t ∈ [a, b]

x(t) = x0 +

∫ t

a

f(x(s)) ds , a ≤ t ≤ b . (1.29)

We can interpret this equation as a fixed point equation in M = {x ∈ C[a, b] : x(0) = x0} which is a
closed subspace of a Banach space and thus itself a Banach space. We define F : M →M ] by

F (x)(t) = x0 +

∫ t

a

f(x(s)) ds , a ≤ t ≤ b (1.30)

and thus x(t) is a solution of (1.28) on the interval [a, b] if and only if F (x)(t) = x(t) for t ∈ [a, b].
In order to apply the Banach fixed point theorem we assume that f is globally Lipschitz, i.e., there exists

a constant L > 0 such that for all x, y ∈ R

|f(x)− f(y)| ≤ L|x− y| (1.31)

Then if we equip C[a, b] with the maximum metric we have

d(F (x), F (y)) = sup
t∈[a,b]

|F (x(t))− F (y(t))| ≤ sup
t∈[a,b]

∫ t

a

|f(x(s))− f(y(s))| ds

≤ L

∫ t

a

|x(s)− y(s)| ≤ L(b− a) d(x, y) . (1.32)
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We can apply the Banach fixed point theorem provided q = L(b − a) < 1. This means there is a unique
solution of the differential equation on a suitable interval [a, b] is b is sufficiently close to a.

There are many generalizations of this result to systems of differential equations or even partial differ-
ential equations and the Lipschitz condition can be somewhat relaxed too.

1.3 Exercises
Exercise 1. Let M be a complete metric space and let F : M 7→M . Suppose there exists a sequence an is
a sequence of non-negative numbers with

∑∞
n=1 an <∞ and

d(Fn(x), Fn(y)) ≤ and(x, y) . (1.33)

Show that F has a unique fixed point.
Hint: Modify the proof of Banach fixed point theorem

Exercise 2. In this problem we consider the Volterra integral equation given by the fixed point equation
f = F (f) where

F (t)(t) = λ

∫ t

a

k(t, s)f(s) ds+ h(s) (1.34)

where h(t) ∈ C[a, b] and k(t, s) ∈ C[a, b]×C[a, b] are given. We will show that this equation has a unique
solution for any value of λ (compare with the Fredholm integral equation).

Let K the Volterra integral kernel be given by

Kf(t) = λ

∫ t

a

k(t, s)f(s) ds (1.35)

1. Show that Fn(f) =
∑n
k=0K

kh+Knf .

2. Prove that |Knf(t)| ≤ Cn (t−a)n

n! supt |f(t)| for a suitable constant C.

3. Use the previous exercise to show the existence of a unique solution in C[a, b] to the Volterra integral
equation.

Exercise 3. Consider the differential equation (initial value problem)

dx(t)

dt
= f(x(t)) , x(0) = x0 (1.36)

where f : R→ R is Lipschitz. Consider the metric space C[0,∞) with the metric

d(x, y) = sup
t≥0

e−Dt|f(t)| . (1.37)

Use this metric space for a suitable choice of D to show that the initial value problem (1.36) has a unique
solution for t ∈ [0,∞).



Chapter 2

Normed Vector Spaces

For general metric spaces (M,d) the set M has no structure besides the topology induced buy the norm. We
concentrate now on the special case where

M = V = vector space over K with K = R or C

2.1 Some concepts from linear algebra
We recall some basic concepts from linear algebra slightly generalized to vector spaces which may have
infinite dimension. In this section we do not use any topological concepts yet.

Definition 2.1. 1. A set M ⊂ V is called linearly independent if every finite subset of M is linearly
independent.

2. The set E ⊂ V is called a Hamel basis (algebraic basis) of V if E is linearly independent and every
vector ξ ∈ V can be written uniquely as finite linear combination of elements in E.

Using Zorn’s Lemma one can prove that

Theorem 2.2. Let M ⊂ V be linearly independent. Then V has a Hamel basis which contains M .

We use the following notations: for N,M ⊂ V , ξ ∈ V and a ∈ K

ξ +M = {ξ + η ; η ∈M} ,
N +M = {ξ + η ; ξ ∈ N, η ∈M} ,

aM = {aξ ; ξ ∈M} .

Definition 2.3. 1. If M and N are subspaces of V and M ∩ N = {0} then M + N is a subspace and
one write M +N as M ⊕N (direct sum).

2. If V = M ⊕N we say that M and N are complementary subspaces.

Proposition 2.4. To each subspace M ⊂ V there exists a complementary subspace N (not uniquely de-
fined).

9
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Proof. LetEM a Hamel basis ofM andE a Hamel basis of V which containsEM (see the proof of Theorem
2.2). Then E \ EM generates a subspace N which is complementary to M .

Definition 2.5. If V = M ⊕N and dimN = n <∞ then we say that M has codimension n, i.e.,

codimM = dimM . (2.1)

One check easily that

Proposition 2.6. If V = M ⊕N1 = M ⊕N2. Then dimN1 = dimN2.

Definition 2.7. Suppose V = M ⊕N . Then any ξ ∈ V has a unique decomposition

ξ = α+ β (2.2)

with α ∈M , β ∈ N . The projection of ξ on M along N is given by

Pξ = α . (2.3)

One verifies easily that

Lemma 2.8. We have P 2 = P .

Conversely we have

Lemma 2.9. Suppose P : V → V is linear map such that P 2 = P . Then V = M ⊕N where M = PV
and N = (1− P )V .

Proof. For any ξ ∈ V we have
ξ = Pξ︸︷︷︸

∈M

+ (1− P )ξ︸ ︷︷ ︸
∈N

(2.4)

and thus V = M +N . The sum is direct, since if

ξ ∈M ∩N = PV ∩ (1− P )V (2.5)

we have, on one hand, ξ = Pα and so

Pξ = P 2α = Pα = ξ . (2.6)

On the other hand ξ = (1− P )β and so we obtain

ξ = Pξ = P (1− P )β = (P − P 2)β = 0 . (2.7)

Thus M ∩N = {0}.

Using projections we can prove

Theorem 2.10. Suppose T : V → W is a linear map. Let P a projection on the nullspace of T and Q a
projection along the range of T . Then there exists a linear map S : W → V such that

ST = 1V − P , TS = 1W −Q . (2.8)

The map T is bijective if and only P = Q = 0.
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Proof. Let us denote N = N (T ) ⊂ V the nullspace (or kernel) of T and and M = R(T ) ⊂ W the range
of T . We have

V = N ⊕ V1 , W = W1 ⊕M . (2.9)

and P is the projection on N along V1 and Q the projection on W1 along M .
We define T0 : V1 →M by T0ξ = Tξ. Then T0 is bijective and so T−1

0 : M → V1 exists. If

S = T−1
0 (1−Q) : W → V1 (2.10)

we have

STξ =

{
0 if ξ ∈ V
ξ if ξ ∈ V1

(2.11)

and so
ST = 1V − P . (2.12)

Arguing similarly we have
TS = 1W −Q . (2.13)

2.2 Norm
Suppose we have a metric d on a vector space V . It is natural to ask whether the metric respects the linear
structure of V . By that we mean that

1. d is translation invariant, i.e., d(ξ + α, η + α) = d(ξ, η) for all α ∈ V .

2. Under scalar multiplication we have d(aξ, aη) = |a|d(ξ, η).

Property 1. implies that d(ξ, η) = d(ξ−η, 0). If we set then ‖ξ‖ := d(ξ, 0) we have then from the properties
of the distance that

(N1) ‖ξ‖ ≥ 0 and ξ = 0 if and only if ξ = 0.

(N2’) ‖ξ‖ = ‖ − ξ‖ (symmetry)

(N3) ‖ξ + η‖ ≤ ‖ξ‖+ ‖η‖

while from Property 2., instead of (N2’) we obtain the stronger

(N2) ‖aξ‖ = |a|‖ξ‖

Definition 2.11. (Normed vector spaces)

1. A map ‖ · ‖ : V → R is called a norm on V if it satisfies the condition (N1), (N2), and (N3).

2. The pair (V, ‖ · ‖) is called a normed vector space.

3. A complete normed vector space is called a Banach space.

Note that in a normed vector space we have convergence in the sense of the metric defined by d(ξ, η) =
‖ξ − η‖ or equivalently ξn converges to ξ if and only if limn→∞ ‖ξ − ξn‖ = 0.
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Example 2.12. We give examples of normed vector spaces (see Math 623-624 for details and proofs).

1. For p ≥ 1,

lp =
{
ξ = (x1, x2, x3, · · · )xi ∈ C with ‖ξ‖p := (

∑
i

|xi|p)1/p <∞
}

(2.14)

is a Banach space. The completeness is non-trivial as is the triangle inequality (a.k.a Minkowsky
inequality).

2. The space
l∞ =

{
ξ = (x1, x2, x3, · · · )xi ∈ C with ‖ξ‖∞ := sup

i
|xi| <∞

}
(2.15)

is a Banach space as well as

c0 =
{
ξ ∈ l∞ , ξ = (x1, x2, x3, · · · ) lim

i
xi = 0

}
(2.16)

and
c =

{
ξ ∈ l∞ , ξ = (x1, x2, x3, · · · ) lim

i
xi exists

}
(2.17)

3. The space

Cn[a, b] =
{
f : [a, b]→ R : f n times continuously differentiable

}
(2.18)

is a Banach space with the norm

‖f‖ =

n∑
k=0

max
t∈[a,b]

|f (k)(t)| (2.19)

where f (k) is the k-th derivetive of f .

4. The space
BV [a, b] =

{
f : [a, b]→ R : f of bounded variation

}
(2.20)

is a Banach space with the norm
‖f‖ = |f(a)|+ V (f) (2.21)

where V (f) is the variation of f on [a, b] given by

V (f) = sup
P

N∑
k=1

|f(xk)− f(xk−1| (2.22)

where P is set of partition of [a, b]: a = x0 < x1 < · · · < xn = b.

The following facts are very easy but also very important

Proposition 2.13. Let (V, ‖ · ‖) be a normed vector space.

1. The linear operations are continuous

2. The map ξ → ‖ξ‖ is continuous.
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Proof. If ξn → ξ and ηn → η then ξn + tηn → ξ + tη since

‖(ξ + t)η − (ξn + tηn‖ ≤ ‖ξ − ξn‖+ |t|‖η − ηn‖ . (2.23)

If ξn → ξ then ‖ξn‖ → ‖ξ‖ since
|‖ξ‖ − ‖ξn‖| ≤ ‖ξ − ξn‖ (2.24)

by the (reverse) triangle inequality.

Definition 2.14. (Comparison of norms) Suppose two norms ‖ · ‖1 and ‖ · ‖2 are given on a vector space
V .

1. The norm ‖ · ‖1 is stronger than ‖ · ‖2 if there exists C > 0 such that for all ξ ∈ V .

‖ξ‖2 ≤ C‖ξ‖1 (2.25)

2. The The norms ‖ · ‖1 and ‖ · ‖2 are equivalent if there exists constants C and D such that

D‖ξ1‖ ≤ ‖ξ‖2 ≤ C‖ξ‖1 . (2.26)

Clearly equivalent norm induce the same topology since convergence of one sequence in one norm
implies the convergence of the sequence in the other norm.

Theorem 2.15. If dim(V ) <∞ then all norms on V are equivalent.

Proof. : This is left as an exercise. Use Bolzano-Weierstrass.

2.3 Continuous linear maps
Let (V, ‖ · ‖V ) and (W, ‖ · ‖W ) be two normed vector space. In the sequel, whenever there is no risk of
confusion we shall drop the index V or W from the norm and simply denote it by ‖ · ‖. We also consider a
linear map

T : V →W . (2.27)

Unless explicitly specified we will deal only with linear maps in the sequel. We also use the notation Tξ for
T (ξ)

Definition 2.16. Let T : V →W be a linear map.

1. The map T is bounded if there exists a constant C ≥ 0 such that

‖Tξ‖ ≤ C‖ξ‖ (2.28)

for all ξ ∈ V .

2. The norm of T , denoted by ‖T‖ is the smallest C such that (2.28) holds, i.e.

‖T‖ := sup
ξ∈V,ξ 6=0

‖Tξ‖
‖ξ‖

= sup
ξ∈V,‖ξ‖=1

‖Tξ‖ . (2.29)
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3. The set of bounded linear maps is denoted by

L(V,W ) =
{
T : V →W, T linear and bounded

}
(2.30)

and we write
L(V ) := L(V, V ) . (2.31)

Theorem 2.17. Let T be a linear map. Then T is bounded if and only if T is continuous.

Proof. Suppose T is bounded, then we have

‖Tξ − T η‖ = ‖T (ξ − η)‖ ≤ ‖T‖‖ξ − η‖ (2.32)

and this implies that T is (Lipschitz) continuous.
Conversely let us assume that T is continuous but not bounded. Then there exists a sequence ξn such

that
‖Tξn‖ ≥ n‖ξn‖ . (2.33)

Let us set

ηn =
ξn√
n‖ξn‖

.

Then we have

‖ηn‖ =
1√
n
, ‖Tηn‖ > n‖ηn‖ =

√
n . (2.34)

This means that ηn → 0 but Tηn is divergent which contradicts the continuity of T .

Example 2.18. Let us consider some examples of bounded (and not bounded operators). Many more exam-
ples to come.

1. The identity operator 1 defined by 1ξ = ξ is bounded with ‖1‖ = 1.

2. The differentiation operator is not bounded. Take for example the space V which consists of polyno-
mials p(t) on [0, 1] with the sup-norm and set Tp(t) = p′(t). Then if pn(t) = xn we have ‖pn‖ = 1
for all n but ‖Tpn‖ = ‖ntn−1‖ = n and this shows that T is not bounded.

Note that differentiation is a very natural operation so to include it in our consideration we will con-
sider unbounded linear operator later on.

3. The integral operator

Tf(t) =

∫ b

a

k(t, s)f(s) ds (2.35)

is bounded on C[a, b] equipped with the sup-norm if k(t, s) ∈ C([a, b] × [a, b]). Indeed we Tf(t) is
continuous in t by e.g. the dominated convergence theorem and

‖Tf‖ = sup
t
|
∫ b

a

k(t, s)f(s) ds| ≤ sup
s
|f(s)| sup

t

∫ b

a

|k(t, s)| ds︸ ︷︷ ︸
≡C

(2.36)
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and C is finite since k is continuous. Actually we can show that ‖T‖ = supt
∫ b
a
|k(t, s)| ds. If

k(t, s) is nonnegative then we simply take f = 1 and we have ‖T1‖ = supt
∫ b
a
|k(t, s)| ds. For a

general k we pick t0 such that supt
∫ b
a
|k(t, s)| ds =

∫ b
a
|k(t0, s)| ds. Then we would like to pick

the function f(s) = sign k(t0, s) so that Tf(t0) =
∫ b
a
k(t0, s)f(s)ds =

∫ b
a
|k(t0, s)| ds. But this

f is not continuous and we need to use an approximation argument. Consider the function φn(t)
which is piecewise linear, increasing, continuous, with φ(t) = sign t if |t| > 1/n. We set fn(s) =
φn(k(t0, s)). We have

Tfn(t0) =

∫ b

a

k(t0, s)fn(s) ds =

∫ b

a

|k(t0, s)| ds−
1

n
(b− a) . (2.37)

From this it follows that ‖T‖ =
∫ b
a
|k(t0, s)| ds.

4. The Fourier transform is defined by

f̂(k) =

∫
R
f(x)e−i2πkx , (2.38)

and we write T (f) = f̂ . In Math 623-624 ones proves (after some effort) that T : L1(R, dx) →
C0(R) is a bounded operator with norm 1. Here C0(R) is the Banach space of continuous functions
such that lim|x|→∞ |f(x)| → 0 equipped with the sup-norm. One also proves (after some more
effort) that T : L2(R, dx) → L2(R, dx) defines an unitary transformation (i.e. T is invertible and
‖Tf‖ = ‖f‖ for al f ).

Theorem 2.19. L(V,W ) is a normed vector space.

Proof. Let T , S ∈ V and a a scalar.

• (N1) We have ‖T‖ ≥ 0. If ‖T‖ = 0 then we have ‖Tξ‖ ≤ ‖T‖‖ξ‖ = 0 and so T = 0. Conversely if
T = 0 then obviously ‖T‖ = 0.

• (N2) ‖aT‖ = sup
‖ξ‖=1

‖aTξ‖ = |a| sup
‖ξ‖=1

‖Tξ‖ = |a|‖T‖

• (N3) ‖(T + S)ξ‖ ≤ ‖Tξ‖+ ‖Sξ‖ and thus ‖T + S‖ ≤ ‖T‖+ ‖S‖.

Theorem 2.20. If W is a Banach space then L(V,W ) is a Banach space.

Proof. Let Tn be Cauchy sequence in L(V,W ). For any ξ ∈ V we have

‖Tnξ − Tmξ‖ ≤ ‖Tn − Tm‖‖ξ‖ (2.39)

and thus Tnξ is a Cauchy sequence in W . Since W is complete this sequence has a limit in W and we set

η = lim
n→∞

Tnξ (2.40)
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We define then T : V → W by Tξ = η. The linearity of Tn immediately implies that T is linear. What
remains to prove is that T is bounded and Tn → T . Given ε > 0 pick N such that for n,m > N we have

‖Tnξ − Tmξ‖ ≤ ‖Tn − Tm‖‖ξ‖ ≤ ε‖ξ‖ (2.41)

Using the continuity of the norm and taking m→∞ in (2.41) we have

‖Tnξ − Tξ‖ ≤ ε‖ξ‖ (2.42)

for any n ≥ N . This implies that ‖T − TN‖ ≤ ε and so ‖T‖ ≤ ‖T − TN‖ + ‖TN‖ < ∞ and so T is
bounded. This also implies that ‖T − Tn‖ ≤ ε for n ≥ N and so Tn → T .

Theorem 2.21. For S ∈ L(U, V ) and T ∈ L(V,W ) we have TS := T ◦ S ∈ L(U,W ) and

‖TS‖ ≤ ‖T‖‖S‖ (2.43)

Proof. ‖TS‖ = sup
‖ξ‖=1

‖TSξ‖ ≤ ‖T‖ sup
‖ξ‖=1

‖Sξ‖ = ‖T‖‖S‖.

Corollary 2.22. For T ∈ L(V ) we have

1. ‖Tn‖ ≤ ‖T‖n

2. The limit r(T ) = lim
n→∞

‖Tn‖1/n exists and is called the spectral radius of T .

3. r(T ) = inf
n
‖Tn‖1/n ≤ ‖T‖

Proof. 1. is immediate. For 2. and 3. set cn = ‖Tn‖/‖T‖n. Then we have 0 ≤ cn ≤ 1 and cn+m ≤ cncm
and this implies that cn is a bounded decreasing sequence and so c = limn→∞cn exists. Therefore c1/nn is
also a decreasing with limit

lim
n→∞

‖Tn‖1/n

‖T‖
= inf

n

‖Tn‖1/n

‖T‖
(2.44)

The notation ”spectral radius” will become clear in the sequel.
As an application we consider the Neumann series which is is a generalization of the geometric series.

Suppose V is a Banach space, T ∈ L(V ) with ‖T‖ = δ < 1. Then the series
∑∞
k=0 T

k converges since
since the partial sum Sn =

∑∞
k=0 T

k satisfy for n > m

‖Sn − Sm‖ ≤
n∑

k=m+1

‖T k‖ ≤
n∑

k=m+1

δk ≤ δm+1 1

1− δ
(2.45)

and thus form a Cauchy sequence and we have limn Sn =
∑
k=0∞ T

k.
Furthermore we have

(1− T )Sn = Sn(1− T ) = 1− Tn+1 → 1 (2.46)

and thus we conclude that 1− T is invertible and

(1− T )−1 =

∞∑
k=0

T k . (2.47)

One can prove the stronger result
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Theorem 2.23. Let V be a Banach space and T ∈ L(V ) with r(T ) < 1. Then (1 − T )−1 exists and is
given by the Neumann series

(1− T )−1 =

∞∑
k=0

T k (2.48)

Proof. Note first that
∑
TK converges whenever

∑
k ‖T k‖ does. If r(T ) = δ < 1 then for any δ′ with

δ < δ′ < 1 there exists N such that for n > N we have ‖Tn‖1/n ≤ δ′. This means that ‖Tn‖ ≤ (δ′)n and
so
∑
k ‖T k‖ converges. The rest is as before.

Linear operators occur naturally as derivative and this is true in infinite-dimensional spaces as well.

Definition 2.24. Let V and W be normed vector spaces and U ⊂ V open. The map F : U → W is said to
be differentiable at η ∈ U if there exists a continuous linear map F ′(a) such that

F (ξ) = F (η) + F ′(η)(ξ − η) +R(ξ)‖ξ − η‖ , (2.49)

where R : U →W satisfy limξ→η R(ξ) = 0.

Let is consider a few examples

Example 2.25. 1. Let V = W = C[a, b] and let k ∈ C[0, 1] × [0, 1] and g be twice continuously
differentiable. Let us consider the map

F (x)(t) =

∫ b

a

k(t, s)g(x(s)) ds (2.50)

To compute the derivative we pick h ∈ C[0, 1] and using the mean value theorem we obtain

F (x+ h)− F (x) =

∫ b

a

k(t, s) [g(x(s) + h(s))− g(x(s))] ds

=

∫ b

a

k(t, s)

[
g′(x(s))h(s) +

1

2
g′′(a(s))h(s)2

]
ds (2.51)

where a(s) is a value between x(s) and x(s) + h(s). This computation shows that the linear F ′(x) :
C[0, 1]→ C[0, 1] given by

F ′(x)(h)(t) =

∫ b

a

k(t, s)g′(x(s))h(s) ds (2.52)

is a good candidate for the derivative. Clearly this map is bounded since k(t, s)g′(x(s)) ∈ C[0, 1] ×
[0, 1]. Moreover we have the bound

sup
t

∣∣∣∣∣
∫ b

a

k
1

2
k(t, s)g′′(a(s))h(s)2 ds

∣∣∣∣∣ ≤ C‖h‖2 (2.53)

since g′′ is bounded by assumption. This shows that F is differentiable.
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2. Let E be a Banach space and consider the Banach space L(E). We say that T ∈ L(E) is an isomor-
phism if T is linear, bijective, continuous and if A−1 is continuous. We will see in fact in Section 2.8
that by the open map theorem the continuity of A−1 follows from the other assumptions.

In any case the set
GL(E) = {T ∈ L(E) : , T an isomorphism} (2.54)

is an open subset of L(E). Indedd if T is an isomorphism then T + H is an isomorphism provided
‖H‖ ≤ ‖T−1‖−1. This follows from T + H = T (1 + T−1H), from ‖T−1H‖ ≤ ‖T−1‖‖H‖ < 1
and from the geometric series.

Let us consider the map F : GL(E)→ L(E) given by

F (T ) = T−1 . (2.55)

We claim that the F is differentiable and that we have

F ′(T )H = −T−1HT−1 . (2.56)

The continuity of F ′(T ) is clear since we have ‖F ′(T )H‖ ≤ ‖A−1‖2‖H‖. Furthermore we have

F (T +H)− F (T ) = (T +H)−1 − T−1 =
[
(1 + T−1H)− 1

]
T−1

=

∞∑
j=1

(−T−1H)jT−1 (2.57)

if ‖H‖ ≤ ‖T−1‖−1 (geometric series). The first term in the series is −T−1HT−1 and the remainder
can be bounded by ‖T−1‖2‖H‖(1 − ‖T−1‖‖H‖)−1. The reminder divided by ‖H‖ tends to 0,
showing the differentiability.

Pointwise (strong) convergence: In L(V,W ), in addition to norm convergence ( ≡ uniform convergence)
there is the weaker notion of point wise convergence.

Definition 2.26. Let {Tn} a sequence in L(V,W ) and T ∈ L(V,W ). We say that Tn converges strongly to
T and write

T = s− lim
n→∞

Tn (2.58)

if for any ξ ∈ V we have
lim
n→∞

Tnξ = Tξ . (2.59)

Whenever we need to differentiate between different types of convergence we will write n− limn→∞ Tn
for the convergence in norm.

The following two lemmas are very easy and the proof is left to the reader.

Lemma 2.27. If n− limn→∞ Tn = T then s− limn→∞ Tn = T .

Lemma 2.28. The linear operations are continuous with respect to strong convergence.

However note that if n − limn→∞ Tn = T then Tn‖ → ‖T‖ but this does not necessarily hold in the
case of strong convergence. Similarly if n − limn→∞ Tn = T and n − limn→∞ Sn = S then we have
n− limn→∞ SnTn = ST but this does not necessarily hold for strong convergence.
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Example 2.29. Let V = lp and for ξ = (x1, x2, · · · ) let us set

Tnξ = (x1, · · · , xn, 0, 0, · · · ) . (2.60)

Then we have Tnξ − ξ → 0 and so s− limn→∞ Tn = 1. But since

(1− Tn)ξ = (0, · · · , 0, xn+1, xn+2, · · · ) (2.61)

for any n we can find ηn with ‖ηn = 1‖ = 1 and (1− Tn)ηn = ηn. This implies that ‖1− Tn‖ = 1 for all
n and so n− limn→∞ Tn is certainly not equal to 1.

2.4 Linear functionals and dual spaces
Definition 2.30. If V is a Banach space over K = R or C then L(V,K) is a Banach space. We write

V ′ := L(V,K) (2.62)

and V ′ is called the dual space. The elements of V ′ are called linear functionals on V and for λ ∈ V ′ the
norm is given by

‖λ‖ = sup
ξ∈V
‖ξ‖=1

|λ(ξ)| . (2.63)

Let us work out an example in detail

Example 2.31. If V = lp for p > 1 then V ′ = lq where p−1 + q−1 = 1.

Proof. Note first that if η = (y1, y2, · · · ) ∈ lq then λη(ξ) defined by

λη(ξ) =

∞∑
k=1

xkyk (2.64)

defines a bounded linear functional on lp since by Hölder’s inequality we have

|λη(ξ)| ≤ ‖ξ‖p‖η‖q , (2.65)

and so ‖λη‖ ≤ ‖η‖q .
Let us denote

εk = {δik}∞i=1 ∈ lp . (2.66)

Any ξ ∈ lp can be written as the convergent series in lp

ξ =

∞∑
k=1

xkεk . (2.67)

Let λ ∈ V , since it is continuous, we have

λ(ξ) =
∑
k

xkyk with yk = λ(εk) . (2.68)

and we set η = {yk} and λ has the from λη .
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Let us pick ξ(n) = {x(n)
k } with

x
(n)
k =

{
|yk|q
yk

if k ≤ n and yk 6= 0

0 otherwise
. (2.69)

We have then

λ(ξ(n)) =

n∑
k=1

|yk|q

≤ ‖λ‖‖ξ(n)‖p

= ‖λ‖

(
n∑
k=1

|x(n)
k |

p

)1/p

= ‖λ‖

(
n∑
k=1

|yk|(q−1)p

)1/p

= ‖λ‖

(
n∑
k=1

|yk|q
)1−1/q

. (2.70)

We obtain then (
n∑
k=1

|yk|q
)1/q

≤ ‖λ . (2.71)

Since n is arbitrary we conclude that η ∈ lq and ‖η‖q ≤ λ. Combining with Hölder’s inequality shows that
‖Λη‖ = ‖η‖q and that the map λ 7→ η from (lp)

′ to lq is a norm preserving isomorphism.

Example 2.32. In a similar way one shows that Lp(X,µ)′ = Lq(X,µ) for an arbitrary measure space
(X,µ) and 1 < p <∞.

Example 2.33. With some minor modifications the same proof works for l1 and we have (l1) = l∞.
However it is not true that (l∞)′ = l1 but rather we have

l1 = (c0)′ (2.72)

Proof. Let η ∈ l1 and ξ ∈ c0. Then the series λη(ξ) =
∑
k xkyk converges and by Hölder’s equality we

have
|λη(ξ)| ≤ ‖ξ‖∞‖η‖1 . (2.73)

Thus we ‖λη‖ ≤ ‖η‖1.
For any ε > 0, let N be such that

∑
k≥N |yk| < ε. Pick then ξ(N) = {x(N)

k } with

x
(N)
k =

{
|yk|
yk

if k ≤ n and yk 6= 0

0 otherwise
. (2.74)

We have then
|λη(ξ)| =

∑
k≥N

|yk| ≥ (‖η‖1 − ε)‖ξ‖ . (2.75)
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Therefore ‖λη‖ ≥ ‖η‖1 and so ‖λη‖ = ‖η‖1.
It remains to show that every linear functional on c0 has the above form. If ξ ∈ c0 then we can write

ξ =
∑∞
k=1 xkεk (not true in l∞!) and so for any λ ∈ c′0 there exists η = {yk} such that λ(ξ) = λη(ξ) =∑∞

k=1 xkyk. Picking ξ(n) as in (2.74) we have ‖ξ(n)‖∞ = 1 and

‖λη(ξ(n)) =

(
n∑
k=1

|yk|

)
‖ξ(n)‖∞ (2.76)

from which we conclude that ‖λη‖ ≥ ‖η‖1, i.e. η ∈ l1.

Schauder basis and separability:

Definition 2.34. A metric space is called separable if it contains a countable dense set.

One shows that lp is separable but l∞ is not separable.

In the construction of dual spaces we used the fact that any ξ ∈ lp, 1 ≤ p < ∞ can be written uniquely
as

ξ =
∑
k=1

xkεk , with ‖ξ‖p =

(∑
k=1

|xk|p
)1/p

<∞ (2.77)

In general we have

Definition 2.35. A countable subset B = {εk} of a normed vector space V is called a Schauder Basis of V
if each vector ξ ∈ V can be written uniquely as ξ =

∑∞
k=1 xkεk.

Without difficulty one shows that

Lemma 2.36. A normed vector space which has a Schauder basis is separable.

It is a remarkable and deep fact that the converse does not hold: there exists Banach spaces which are
separable but do not have a Schauder basis. (See P. Enflo. A counterexample to the approximation problem
in Banach spaces, Acta Math 130, 309, (1973).)

2.5 Hahn-Banach theorem
As we will see a very important question in functional analysis is how to extend a functional defined on a
subspace W of a vector space V to all V while respecting some properties.

Theorem 2.37. Hahn-Banach (real vector spaces) Let V a vector space over R and p : V → R a convex
function on V , i.e. we have

p(aξ + (1− a)η) ≤ ap(ξ) + (1− a)p(η) (2.78)

for any a ∈ [0, 1] and all ξ, η ∈ V .
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Let φ be a linear functional defined on the subspace W ⊂ V such that we have

φ(ξ) ≤ p(ξ) for all ξ ∈W . (2.79)

Then there exists a linear functional Φ defined on V such that

Φ(ξ) = φ(ξ) for all ξ ∈W .

Φ(ξ) ≤ p(ξ) for all ξ ∈ V . (2.80)

A very important example of a convex function p is a norm (or a semi-norm) on V , i.e., p(ξ) = ‖ξ‖.

Proof. The idea of the proof is to show that one can extend φ from W to W + Rη for any ξ /∈ W . The rest
follows from an applications of Zorn’s lemma.

Let us choose η /∈ W and let denote W1 = W + Rη. By linearity it is enough to specify c := φ(η) to
define an extension φ1 on W1 since we have then

φ1(ξ + aη) = φ1(ξ) + aφ1(η) = φ(ξ) + ac . (2.81)

To obtain the desired bound on φ1 we need that for all ξ ∈W and a ∈ R we must have

φ1(ξ + aη) = φ(ξ) + ac ≤ p(ξ + aη) . (2.82)

We restrict ourselves to a > 0. Then we looking for a c such that

φ(ξ) + ac ≤ p(ξ + aη)

φ(ξ)− ac ≤ p(ξ − aη)

or

c ≤ 1

a
(p(ξ + aη)− φ(ξ))

c ≥ 1

a
(−p(ξ − aη) + φ(ξ))

(2.83)

Such a c exists provided we can prove that

sup
ξ∈W ,a>0

1

a
(−p(ξ − aη) + φ(ξ)) ≤ inf

ξ∈W ,a>0

1

a
(p(ξ + aη)− φ(ξ)) (2.84)

that is
1

a1
(−p(ξ1 − a1η) + φ(ξ1)) ≤ 1

a2
(p(ξ2 + a2η)− φ(ξ2)) (2.85)

for all a1, a2 ≥ 0 and ξ1, ξ2 ∈W . Since a1 and a2 are non-negative this is equivalent to

a2φ(ξ1) + a1φ(x2) ≤ a1p(ξ2 − a2η) + a2p(ξ1 − a1η) . (2.86)
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On the other hand we have use the assumption

a2φ(ξ1) + a1φ(x2) = φ(a2ξ1 + a1ξ2)

= (a1 + a2)φ

(
a2

a1 + a2
ξ1 +

a1

a1 + a2
ξ2

)
≤ (a1 + a2)p

(
a2

a1 + a2
ξ1 +

a1

a1 + a2
ξ2

)
= (a1 + a2)p

(
a2

a1 + a2
(ξ1 − a1η) +

a1

a1 + a2
(ξ2 + a2η)

)
≤ a2p(ξ1 − a1η) + a1p(ξ2 + a2η) . (2.87)

This is exactly (2.86) and thus we have proved the existence of c := φ1(η).
We now use Zorn’s lemma. Let A the set of all extension ψ won φ auf some subspace Wψ with the

property that φ = ψ on W and ψ(ξ) ≤ p(ξ) for all ξ ∈ Wψ . In A we can define a partial ordering through
ψ1 ≺ ψ1 if Wψ1

⊂ Wψ2
and ψ1 = ψ2 on Wψ1

. Suppose B ⊂ A is totally ordered and define then Ψ
on ∪ψ∈BWψ through Ψ(ξ) = ψ(ξ) on Wψ . By construction ψ ≺ Ψ for all ψ ∈ B and so B has an upper
bound. By Zorn’s lemmaA has a maximal element Φ which satisfies Φ = φ onW and Φ(ξ) ≤ p(ξ). Finally
WΦ must be V since otherwise one could extend Φ as before and this contradicts maximality.

This theorem as an extension to complex vector spaces.

Theorem 2.38. Hahn-Banach (real vector spaces) Let V a vector space over C and p : V → R such that
we have p(aξ + bη) ≤ |a|p(ξ) + |b|p(η) for any a, b ∈ C with |a|+ |b| = 1 and all ξ, η ∈ V .

Let φ be a complex linear functional defined on the subspace W ⊂ V such that we have

|φ(ξ)| ≤ p(ξ) for all ξ ∈W . (2.88)

Then there exists a linear functional Φ defined on V such that

Φ(ξ) = φ(ξ) for all ξ ∈W .

|Φ(ξ)| ≤ p(ξ) for all ξ ∈ V . (2.89)

Proof. The functional φr(ξ) = Reφ(ξ) is a real functional on V viewed as a vector field over R. In addition

φr(iξ) = Reφ(iξ) = Reiφ(ξ) = −Imφ(ξ) . (2.90)

and so
φ(ξ) = φr(ξ)− iφr(iξ) . (2.91)

Conversely given any real linear functional Φr on V let us define Φ(ξ) = Φr(ξ) − iΦr(iξ). It is certainly
linear over R and we have

Φ(iξ) = Φr(iξ)− iΦr(−ξ) = Φr(iξ) + iΦr(ξ) = iΦ(ξ) (2.92)

and so Φ is linear over C.
By the real Hahn-Banach theorem we can extend φr to Φr on V such that Φr(ξ) ≤ p(ξ) and Φ(ξ) =

Φr(ξ)− iΦr(iξ) is complex linear. With θ = argΦ(ξ) we find

|Φ(ξ)| = e−iθΦ(ξ) = Φ(e−iθξ) = Φr(e
−iθ) ≤ p(e−iθξ) ≤ |e−iθ|p(ξ) = p(ξ). (2.93)
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It is hard to overemphasize how important this theorem is for the foundations of functional analysis. Let
us first derive some corollaries and then discuss a number of applications.

Corollary 2.39. Let (V, ‖ ·‖) be a normed vector space, W ⊂ V a subspace, and φ ∈W ′. Then there exists
λ ∈ V ′ such that λ = φ on W and ‖λ‖ = ‖φ‖.

Proof. Take p(ξ) = ‖φ‖‖ξ‖ and apply Hahn-Banach.

Corollary 2.40. Let (V, ‖ · ‖) be a normed vector space, 0 6= ξ ∈ V . Then there exists λ ∈ V ′ such that
λ(ξ) = ‖ξ‖ and ‖λ‖ = 1.

Proof. Let W = Kξ be the subpsace spanned by ξ and set φ(aξ) = a‖ξ‖. This is a linear functional with
‖φ‖ = 1. Now use Corollary 2.39.

Corollary 2.41. Let (V, ‖ · ‖) be a normed vector space, W ⊂ V a subspace. Let ξ ∈ V be such that

inf
η∈W

‖ξ − η‖ = δ > 0 . (2.94)

Then there exists λ ∈ V ′ such that ‖λ‖ = 1, λ(ξ) = δ and λ(η) = 0 for η ∈W .

Proof. Consider the subspace W1 = W ⊕Kξ and let define λ1 on W1 by

λ1(η + aξ) = aδ (2.95)

Clearly we have λ1(η) = 0 for η ∈ W and λ1(ξ) = δ. The functional λ1 is linear and bounded with norm
1: using the assumption (2.94) we have

‖η + aξ‖ = ‖ − a(−1

a
η − ξ)‖ = |a|‖ − 1

a
η − ξ‖ ≥ |a|δ = |λ1(η + aξ)‖ (2.96)

and so ‖λ1‖ ≤ 1. On the other hand for ε > 0 there exists η ∈W such that

δ ≤ ‖ξ − η‖ ≤ δ(1 + ε) . (2.97)

Then we have

λ1(ξ − η) = δ ≥ 1

1 + ε
‖ξ − η‖ , (2.98)

that is ‖λ1‖ ≥ (1 + ε)−1. So ‖λ1‖ = 1. Now use Corollary 2.39 for any ‖ξ‖ there exists
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2.6 Applications of Hahn-Banach theorem

Dual and bidual spaces The Hahn-Banach space is useful to derive the properties of the dual space V ′ as
well as the bidual V ′′ = (V ′)′ of a Banach space. First we derive a dual representation of the norm

Theorem 2.42. Let V be a normed vector space. Then we have

‖ξ‖ = sup
λ∈V ′ ,λ6=0

|λ(ξ)|
‖λ‖

(2.99)

In particular if ξ0 is such that λ(ξ0) = 0 for all λ ∈ V ′ then ξ0 = 0.

Proof. On one hand from |λ(ξ)| ≤ ‖λ‖‖ξ‖ we have

‖ξ‖ ≥ sup
λ∈V ′ ,λ6=0

|λ(ξ)|
‖λ‖

. (2.100)

Using corollary 2.40 for a given fixed ξ there exists λξ ∈ V ′ such that ‖λ‖ = 1 and

‖ξ‖ = λξ(ξ) =
|λξ(ξ)|
‖λξ‖

. (2.101)

The next results describe the relation between a Banach space V and his bidual V ′′.

Theorem 2.43. Let V be a normed vector space. For ξ ∈ V define an element ξ̂ ∈ V ′′ by

ξ̂(λ) = λ(ξ) , λ ∈ V ′ . (2.102)

Then the map

J : V → V ′′

ξ 7→ ξ̂ (2.103)

is an isometric isomorphism from V to a subspace of V ′′.

Proof. Since |ξ̂(λ)| = |λ(ξ)| ≤ ‖λ‖V ′‖ξ‖V is ξ̂ a bounded linear functional on V ′ with

‖ξ̂‖V ′′ ≤ ‖ξ‖V . (2.104)

This shows that J(V ) ⊂ V ′′ and it remains to show that ‖ξ̂‖V ′′ = ‖ξ‖V . By corollary 2.40 given ξ there
exists λξ ∈ V ′ such that λξ(ξ) = ‖ξ‖. Then we have

‖ξ̂‖V ′′ = sup
λ∈V ′,‖λ‖=1

|ξ̂(λ)| ≥ |ξ̂(λξ)| = λξ(ξ) = ‖ξ‖V . (2.105)

Therefore J is an isometry of V onto its range.

The following theorem suggest
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Definition 2.44. A Banach space V is called reflexive (or self-dual) if J : V → V ′′ is bijective.

With respect to separability we have

Theorem 2.45. A normed vector space V is separable if V ′ is separable.

Proof. Consider a dense set {λk}k≥1 in V ′ and for each k pick ξk ∈ V with ‖ξk‖ = 1 and such that

λk(ξk) ≥ 1

2
‖λk‖ . (2.106)

Now let W be the countable set of finite linear combinations of the ξk with rational coefficients.
By contradiction let us assume that W is not dense and so there exists ξ ∈ V such that

inf
η∈W

‖ξ − η‖ = δ > 0 . (2.107)

By corollary 2.41 there exists λ ∈ V ′ such that ‖λ‖ = 1, λ(ξ) = δ and λ|W = 0. But since {λk} is dense
in V ′ there exists a subsequence λki such that limi→∞ ‖λ− λki‖ = 0. On the other hand we have

‖λ− λki‖ ≥ |(λ− λki)(ξki)| = |λki(ξki | ≥
1

2
‖λki‖ (2.108)

But this implies that limi ‖λki‖ and hence λ = 0. This is a contradiction since 0 ∈W .

Corollary 2.46. A separable Banach space V with a non separable dual space V ′ cannot be reflexive.

Proof. If V were reflexive then V ′′ = V would be separable and hence V ′ would be separable by Theorem
2.45.

Example 2.47. Every Hilbert space is reflexive. From Riesz representation theorem (see Math 623-624)
a Hilbert space H is isometrically isomorphic to its dual H ′ which is itself a Hilbert space. Hence H is
isometricaly isomorphic to its bi-dual H ′′.

Example 2.48. lp is reflexive and separable (see hwk). On the other hand l∞ is not separable (see HWK)
from which it follows by corollary 2.46 that l1 is not reflexive and hence (l1)′′ = (l∞)′ 6= l1.

Example 2.49. C[a, b] is not reflexive since its dual space (C[a, b])′ is not separable. To see this note that
for any s ∈ [a, b] the functionals

λs(f) = f(s) (2.109)

satisfy ‖λs‖ = 1 and λs − λs′‖ = 2. Since there are uncountably such functionals separability is excluded.

We shall not prove the following important and classical result (see your measure theory class for details).
Let us consider the Banach space M([a, b]) of all finite complex Borel measures on [a, b] with total variation
norm ‖µ‖var =

∫
[a,b]

d|µ| as well as the Banach space NBV [a, b] of function of bounded variation with
F (a) = 0 with norm ‖F‖NBV = V (F ) where V (F ) is the variation of F .



2.6. APPLICATIONS OF HAHN-BANACH THEOREM 27

Theorem 2.50. Any bounded linear functional λ on C[a, b] can be written as

λ(f) =

∫
[a,b]

fdµ µ Borel measure

=

∫
[a,b]

fdF Lebesgue− Stieljes integral (2.110)

with
‖λ‖ = ‖µ‖var = V ar(F ) . (2.111)

Hence
(C[a, b])

′
= NBV [a.b] = M [a, b] . (2.112)

Finally we construct the dual or adjoint operator to a bounded operator using Hahn-Banach theorem.

Definition 2.51. Let V and W be normed vector spaces and T : V → W a bounded linear operator. Then
the adjoint operator T ′ : W ′ → V ′ is defined by

(T ′λ)(ξ) = λ(Tξ) , ξ ∈ V, λ ∈W ′ . (2.113)

Example 2.52. Let V = W = l1 and T the shift operator defined for ξ = (x1, x2, · · · ) by

Tξ = (0, x1, x2, x3, · · · ) (2.114)

We have (l1)′ = l∞ with η(ξ) =
∑∞
k=1 xkyk. So

(T ′η)(ξ) = η(Tξ) =

∞∑
k=1

ykxk−1 =

∞∑
k=1

yk+1xk , (2.115)

hence we have
T ′η = (y2, y3, · · · ) (2.116)

It is easy to check that ‖T‖ = ‖T ′‖ = 1.

Theorem 2.53. The adjoint operator T ′ is linear bounded and we have

‖T ′‖ = ‖T‖ . (2.117)

Proof. The fact T ′ is linear is easy and left to the reader. We have

‖T ′λ(ξ)‖ = ‖λ(Tξ)‖ ≤ ‖λ‖‖Tξ‖ ≤ ‖λ‖‖T‖‖ξ‖ (2.118)

and this implies that ‖T ′λ‖ ≤ ‖λ‖‖T‖ and so ‖T ′‖ ≤ ‖T‖.
To prove that ‖T ′‖ ≥ ‖T‖ we use that, by Corollary 2.40, for any ξ ∈ V there exists λξ ∈W ′ such that

‖λξ‖ = 1 λξ(Tξ) = ‖Tξ‖ (2.119)

We have then

‖Tξ‖ = ‖λξ(Tξ)‖
= ‖(T ′λξ)(ξ)‖
≤ ‖T ′λξ‖‖ξ‖
≤ ‖T ′‖‖λξ‖‖ξ‖
= ‖T ′‖‖ξ‖ (2.120)
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and therefore ‖T‖ ≤ ‖T ′‖.

Remark 2.54. It is straightforward to see that the map T 7→ T ′ satisfies

1. (T + S)′ = T ′ + S′

2. (αT )′ = αT ′

3. (ST )′ = T ′S′

In the case where V = H is a Hilbert space, then there is, by Riesz representation theorem, a natural
antilinear isometry

J : H ′ → H

λ 7→ λ̂ (2.121)

where
λ(ξ) = (ξ, λ̂) , ξ ∈ H (2.122)

(Recall (·, ·)) is the scalar product in H linear in the first argument, anti-linear in the second argument.)

Definition 2.55. The (Hilbert space) adjoint operator T ∗ : H → H for T ∈ L(H) is defined by

T ∗ = JT ′J−1 . (2.123)

Then we have for any ξ, η ∈ H

(Tξ, η) = (R−1η)(Tξ) = (T ′R−1η)(ξ) = (ξ,RT ′R−1η) = (ξ, T ∗η) . (2.124)

Note that the map T 7→ T ∗ is antilinear, i.e. cT ∗ = c̄T ∗ for c ∈ C. By slight abuse of notation T ∗ is
called the adjoint operator to T .

Theorem 2.56. Let H be a Hilbert space and T, S ∈ L(H). Then we have

1. T 7→ T ∗ is an anti linear isometry of L(H) onto itself.

2. (T ∗)∗ = T

3. (TS)∗ = S∗T ∗

4. If T−1 ∈ L(H) then T ∗−1 ∈ L(H) and (T ∗)−1 = (T−1)∗.

5. ‖T ∗T‖ = ‖T‖2

Proof. 1. follows from Riesz representation theorem. 2. follows from the reflexivity of H and H = H ′. 3.
and 4. are left to the reader. For 5. note that ‖T ∗T‖ ≤ ‖T ∗‖‖T‖ = ‖T‖2. Conversely using theorem 2.42
we have

‖T ∗T‖‖ξ‖ ≥ ‖T ∗Tξ‖ = sup
η:η 6=0

|(T ∗Tξ, η)|
‖η‖

≥ |(T
∗Tξ, ξ)|
‖ξ‖

=
|(Tξ, Tξ)|
‖ξ‖

=
‖Tξ‖2

‖ξ‖
(2.125)

and hence ‖T‖2 ≤ ‖T ∗T‖.
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2.7 Baire theorem and uniform boundedness theorem
The uniform boundedness theorem is quite useful in applications and as the open mapping theorem and
closed graph theorem of next section it derives from a common source: the so-called Baire category theorem.
Here, as opposed to the Hahn-Banach theorem the completeness of the space plays a crucial role.

Definition 2.57. A subset M of a metric space X is said to be

1. nowhere dense in X if its closure M has no interior points.

2. of the first category in X if M is the union of countable many sets each of which is nowhere dense.

3. of the second category in X if M is not of the first category.

Theorem 2.58. (Baire category theorem) A complete non-empty metric space X is of the second category
in itself. In particular if X 6= ∅ is complete and

X =

∞⋃
k=1

Ak , Ak closed (2.126)

then at least one Ak contains a nonempty open subset.

Proof. Let us assume that X is of the first category and so

X =

∞⋃
k=1

Mk , (2.127)

with each Mk nowhere dense. We will construct a Cauchy sequence ξk whose limit belongs to no Mk,
therefore contradicting the representation 2.127.

By assumption M1 is nowhere dense so that M1 does not contain a nonempty open set. But X does (e.g.
X itself). This implies that M1 6= X and thus M1

c
= X \M1 is open and non-empty. So we pick ξ1 ∈M1

c

and an open ball around it

B1 = Bε1(ξ1) ⊂M1
c

ε1 <
1

2
(2.128)

By assumption M2 is nowhere dense in X so that M2 does not contain a nonempty open set. Hence it does
not contain the open ball Bε1/2(ξ1). Therefore M2

c ∩ Bε1/2(ξ1) is nonempty and open so that we may
choose an open ball in this set , say,

B2 = Bε2(ξ2) ⊂M2
c ∩Bε1/2(ξ1) ε2 <

ε1
2
<

1

4
(2.129)

By induction we find a sequence of balls

Bk = Bεk(ξk) εk <
1

2k
(2.130)

such that Bk ∩Mk = ∅ and
Bk+1 ⊂ Bεk/2(ξk) ⊂ Bk . (2.131)
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Since εk < 2k the sequence ξk is Cauchy and limk→∞ ξk = ξ ∈ X . Furthermore for every n and m ≥ n
we have Bm ⊂ Bεn/2(ξn) so that

d(ξn, ξ) ≤ d(ξn, ξm) + d(ξm, ξ) <
εn
2

+ d(ξm, ξ) −→
εn
2
. (2.132)

as m→∞. Hence for every n, ξ ∈ BN ⊂Mn
c

and so ξ /∈ ∪kMk = X . This is a contradiction.

An important immediate consequence of Baire’s theorem is the uniform boundedness theorem (Banach-
Steinhaus theorem). It is quite remarkable since it shows that if a sequence Tn is point wise bounded, it is is
bounded in norm!.

Theorem 2.59. (Uniform boundedness theorem) Let {Tn} be a sequence of bounded linear operators
Tn ∈ L(V,W ) from a Banach space V into a normed vector space W . Assume that for ever ξ ∈ V there
exists a constant cξ such that

sup
n
‖Tnξ‖ ≤ cξ . (2.133)

Then there exists a c such that
sup
n
‖Tn‖ ≤ c (2.134)

Proof. Let us define
Ak = {ξ : sup

n
‖Tnξ‖ ≤ k} , (2.135)

and it is easy to see thatAk is a closed set and we have V =
⋃
k Ak. Since V is complete, by Baire theorem

some Ak contains an open ball, say,
B0 = Br(ξ0) ⊂ Ak0 . (2.136)

For an arbitrary ξ 6= 0 let η ∈ B0 be given by

η = ξ0 +
r

2

ξ

‖ξ‖
. (2.137)

and since η ∈ Ak0 we have supn ‖Tnη‖ ≤ k0. We have

ξ =
2‖ξ‖
r

(η − ξ0) (2.138)

and for any n

‖Tnξ‖ =
2‖ξ‖
r
‖Tn(η − ξ0)‖ ≤ , 2‖ξ‖

r
‖Tnη‖+ ‖Tnξ0)‖ ≤ 4k0

r
‖ξ‖ (2.139)

and hence

sup
n
‖Tn‖ ≤

4k0

r
. (2.140)

This concludes the proof.
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Example 2.60. Bilinear functionals Let V and W be Banach spaces. Consider a bilinear functional

B : V ×W → C (2.141)

which is continuous in each variable. That is for fixed ξ ∈ V

B(ξ, ·) : W → C (2.142)

is linear and continuous and for fixed ηinW

B(·, η) : V → C (2.143)

is linear and continuous. We claim that continuity in each variable implies continuity, i.e., if (ξn, ηn) →
(0, 0) then B(ξn, ηn)→ 0.

Proof. Define Tn : W → C by
Tnη = B(ξn, η) . (2.144)

For any n, by the continuity in the second variable we have that Tn is a bounded operator. For any ηinW by
continuity in the first variable we have limn ‖Tnη‖ = 0 and hence supn ‖Tnη‖ ≤ cη <∞. By the uniform
boundedness theorem there exists a c > 0 such that

sup
n
‖Tn‖ ≤ c (2.145)

or
|B(ξn, ηn)| = ‖Tnηn‖ ≤ c‖ηn‖ −→ 0 (2.146)

as n→∞. Hence we have continuity.

Note further that continuity of B is equivalent to

|B(ξ, η)| ≤ c‖ξ‖‖η‖ (2.147)

for all ξ, η. And this proved exactly as for linear maps.

We apply this to symmetric operators in Hilbert spaces and we show that unbounded symmetric operators
are necessarily defined only on a subspace of H but not on all of H .

Theorem 2.61. (Hellinger-Toeplitz) Let H be a Hilbert space and let T : H → H be a linear operator
defined on all H and we have (Tξ, η) = (ξ, Tη) for all ξ, η ∈ H . Then T is bounded.

Corollary 2.62. LetH be a Hilbert space and let T : DT → H be a linear operator defined on allDT ⊂ H
and we have (Tξ, η) = (ξ, Tη) for all ξ, η ∈ DT . Then DT 6= H

Proof. The bilinear map
B(ξ, η) = (Tξ, η) (2.148)

is continuous in η and since
B(ξ, η) = (ξ, Tη) (2.149)

it is also continuous in ξ. By the previous example B is continuous in both variables jointly and thus there
exists c > 0 such that

|(Tξ, η)| ≤ c‖ξ‖‖η‖ (2.150)
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for all ξ, η ∈ H . In particular if η = Tξ we have

‖Tξ‖2 = (Tξ, Tξ) = (Tξ, η) ≤ c‖ξ‖η‖ = c‖ξ‖‖Tξ‖ . (2.151)

Hence we have ‖T‖ ≤ c.

Example 2.63. (Convergence of Fourier series) Consider a function f periodic of period 2π. Its Fourier
coefficients are

cn =
1

2π

∫ 2π

0

f(t)e−int dt , n ∈ Z (2.152)

and the Fourier partial sums are

SN (f)(t) =
∑
|k|≤N

cne
inx (2.153)

As one learn in an analysis class we have pointwise (or even uniform) convergence of SN (f)(x)tof(x) if
the function f is sufficiently smooth (say f is C1). At discontinuity points f may or may not converge but
interestingly enough even at points where f is continuous SN (f) need not converge. One can construct
explicit examples but we prove this here using the uniform boundedness theorem. First we recall that, using
trigonometric formulas one can write

SN (f)(t) =
1

2π

∫ 2π

0

DN (t− s)f(s) ds with DN (t) =
sin((n+ 1

2 )t)

sin( 1
2 t)

(2.154)

We apply the uniform boundedness theorem by consider the Banach space X of continuous periodic of
period 2π with ‖f‖ = supt |f(t)| and let us define the linear functional

λn(f) = Sn(f)(0) (2.155)

One checks that

|λn(f)| ≤ ‖f‖ 1

2π

∫ 2π

0

|DN (s)| ds (2.156)

By using the same argument as for computing the norm of the Fredholm integral operator we obtain

‖λn‖ =
1

2π

∫ 2π

0

|Dn(s)| ds (2.157)
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Now we use the inequality | sin(t)| < t on [0, π] and obtain

‖λn‖ =
1

2π

∫ 2π

0

∣∣∣∣ sin((n+ 1
2 )t)

sin( 1
2 t)

∣∣∣∣ dt
>

1

π

∫ 2π

0

∣∣sin((n+ 1
2 )t)

∣∣
t

dt

=
1

π

∫ (2n+1)π

0

|sin v|
v

dt

=
1

π

2n∑
k=0

∫ (k+1)π

kπ

|sin v|
v

dt

≥ 1

π

2n∑
k=0

1

(k + 1)π

∫ (k+1)π

kπ

|sin v| dt

=
2

π2

2n∑
k=0

1

(k + 1)
−→ 0 (2.158)

as n→∞. Hence the sequence ‖λn‖ is unbounded. By the uniform boundedness theorem this implies that
supf |λn(f)| cannot be bounded and hence there exists at least one f such that λn(f) = Sn(f)(0) diverges.
That is the Fourier series diverges at t = 0.

2.8 Open mapping and closed graph theorems
After the Hahn-Banach theorem and the uniform boundedness theorem we now attack the third ”big” the-
orem of functional analysis, the open mapping theorem. It is well-known that the continuity of a map
f : X → Y between metric spaces is equivalent to the property that for any open set O ⊂ Y , the set f−1(0)
is also open. By contrast let us define

Definition 2.64. Let M and N be metric spaces. The F : DF → N with domain DF is called an open
mapping if for every open set O ∈ DF the image F (O) is an open set in Y .

Remark 2.65. In general continuous mapping are not open, e.g. f(t) = sin(t) maps the open set (0, 2π)
onto the closed set [−1, 1].

We have the remarkable result

Theorem 2.66. (Open mapping theorem) Let V and W be Banach spaces. A surjective bounded linear
operator T : V →W is an open mapping.

An immediate consequence of this theorem is

Theorem 2.67. Inverse mapping theorem LetLet V and W be Banach spaces and let T : V → W be a
bounded linear bijective map. Then T−1 is continuous and thus bounded.

The proof of theorem 2.66 relies on
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Proposition 2.68. A bounded linear operator T : V → W from a Banach space V onto a Banch space
W has the property that the image of T (B0) of the open unit ball B0 = B1(0) ⊂ V contains an open ball
around 0 ∈W

Proof. The proof consists of three steps:

1. The closure of the open ball B1 = B1/2(0) contains an open ball B∗.

2. If Bn = B2−n(0) then the closure T (Bn) contains an open ball Vn around 0 ∈ Y .

3. T (B0) contains an open ball around 0.

Step 1.: Let B1 = B1/2(0). Then we have

V =

∞⋃
k=1

kB1 . (2.159)

Since T is surjective and linear,

W = T (V ) = T
( ∞⋃
k=1

kB1

)
=

∞⋃
k=1

kT (B1) =

∞⋃
k=1

kT (B1) , (2.160)

where the last equality follows from the fact that the union is Y , hence we did not add any points by taking
the closure. By Baire category theorem there exist some k such that kT (B1) contains an open ball and hence
T (B1) contains an open ball, say B∗ = Bε(η0) ⊂ T (B1). Then we also have

B∗ − η0 = Bε(0) ⊂ T (B1)− η0 (2.161)

Step 2.: We prove that B∗ − η0 ⊂ T (B0) where B0 = B1(0) by proving that (see (2.161)) that

T (B1)− η0 ⊂ T (B0) . (2.162)

Let η ∈ T (B1) − η0. Then η + η0 ∈ T (B1) and we remember that also η0 ∈ T (B1). Then there exists
αn = Tβn ∈ T (B1) and δn = Tγn ∈ T (B1) such that

lim
n
αn = η + η0, , lim

n
δn = η0 . (2.163)

Since βn, γn ∈ B1 of radius 1/2 we have ‖βn − γn‖ < 1 and βn − γn ∈ B0. From

lim
n→∞

T (βn − γn) = η (2.164)

we conclude that η ∈ T (B0). This concludes the proof of (2.162) and thus

B∗ − η0 = Bε(0) ⊂ T (B0) (2.165)

By the linearity of T if Bn = B2−n(0), we have T (Bn) = 2−nT (B0) and thus

Vn = Bε/2n(0) ⊂ T (Bn) (2.166)
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Step 3: Finally we prove that
V1 = Bε/2(0) ⊂ T (B0) . (2.167)

Let η ∈ V1. By (2.166) with n = 1, for any ε > 0 there exist ξ1 ∈ B1 such that

‖η − Tξ1‖ ≤ ε/4 . (2.168)

Then η − Tξ1 ∈ V2 and by (2.166) with n = 2 we see that η − Tξ1 ∈ V2 ⊂ T (B2). Repeating the same
argument we find ξ2 ∈ B2 such that

‖η − Tξ1 − Tξ2‖ ≤ ε/8 (2.169)

and hence η − Tξ1 − Tξ2 ∈ V3 ⊂ T (B3), an so on. In the nth step we select ξninBn such that

‖η −
n∑
k=1

Tξk‖ ≤
ε

2n+1
(2.170)

Let us set ζn = ξ1 + · · · ξn then since ‖ξk‖ ≤ 2−k ζn is Cauchy sequence and ζn → ξ ∈ V . Also ξ ∈ B0

since B0 has radius 1. Since T is continuous Tζn → Tx and by (2.170) we have Tξ = η and so η ∈ T (B0).

Proof of theorem 2.66. This follows from the previous proposition by using linearity to translate and dilate
balls.

The next theorem is also an immediate consequence of the open mapping theorem. Suppose T : D(T )→
W where D(T ) is a subspace of V and is called the domain of T , and V,W are Banach spaces. We do not
assume that T is bounded and in general D(T ) 6= V .

Definition 2.69. The graph of T is the set

Γ(T ) = {[ξ, η] ∈ V ×W ; ξ ∈ DT , η = Tξ} (2.171)

Note that Γ(T ) is a subspace of V ×W which we can make it into a normed vector space with the norm

‖[ξ, η]‖ := ‖ξ‖+ ‖η‖ (2.172)

Definition 2.70. A map T : D(T ) → W (V ,W Banach spaces) is closed if the graph Γ(T ) is closed.
Equivalently T is closed if for any sequence {ξn} such that

ξn −→ ξ and Tξn → eta (2.173)

then
Tx = η (2.174)

Clearly bounded operators are closed, but the converse is not true.

Theorem 2.71. (Closed graph theorem) Let V and W be Banach spaces and T : D(T ) → W a linear
operator. If D(T ) is closed and if T is closed then T is bounded.
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Corollary 2.72. Let V and W be Banach spaces and T : V → W a linear operator. Then T is closed if
and only if T is bounded.

Proof. If D(T ) and Γ(T ) are closed then they are Banach spaces and we define the map P Γ(T )→ D(T )
by

P ([ξ, T ξ]) = ξ (2.175)

i.e., P is the projection on the first component. The map P is a bijection and by the inverse mapping theorem
P−1 is bounded. This means

‖P−1ξ‖ ≤ c‖ξ‖ or ‖ξ‖+ ‖Tξ‖ ≤ C‖ξ‖ (2.176)

. Thus we have ‖Tξ‖ ≤ (C − 1)‖xi‖ and so T is bounded.

As an application we prove

Theorem 2.73. Suppose than V is a Banach space with respect to the two norms ‖ξ‖1 and ‖xi‖2 which
are compatible in the sense that if a sequence {ξn} converges in both norms then the two limits are equal.
Then the two norms are equivalent in the sense that there exists constants cand C such that c‖ξ‖1 ≤ ‖ξ‖2 ≤
C‖ξ‖1.

Proof. Consider the identity map 1 : (V, ‖ · ‖1)→ (V, ‖ · ‖2) given by 1(ξ) = ξ. Compatibility means that
the map 1 is closed. By the closed graph theorem it is bounded in both directions.

We conclude with an example of a closed operator which is not bounded

Example 2.74. Let V = C[0, 1] with the sup-norm and let Tf(t) = f ′(t) be the differentiation operator
with domain D(T ) = C1[0, 1] of continuously differentiable functions. The operator is unbounded (take
fn = tn) and closed since if fn converges uniformly to f and f ′n converge uniformly to h then we have
using uniform convergence to interchange integral and limit∫ t

0

h(s) ds =

∫ t

0

lim
n
f ′n(s) ds =

∫ t

0

lim
n
f ′n(s) ds = f(t)− f(0) , (2.177)

that is f ′(t) = h.

2.9 Exercises
Exercise 4. Prove that lp is a Banach space.

Exercise 5. Consider the normed vector space BV [a, b] with ‖f‖BV = f(a) + V (f) where V (f) is the
variation of f on [a, b] and let ‖f‖∞ = supt |f(t)|.

1. Show that the norm ‖f‖∞ is weaker than ‖f‖BV .

2. Show that BV [a, b] with ‖ · ‖BV is a Banach space. (You may use part 1.)

Exercise 6. Prove Theorem 2.15.
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Exercise 7. Compute the spectral radius of the Volterra integral K operator given in Eq. (1.35) of Exercise
2

Exercise 8. Let m denote Lebesgue measure. Show that the integral operator Tf =
∫ b
a
k(t, s)f(s) ds

defined a bounded operator on L2([a, b],m) provided k ∈ L2([a, b]× [a, b],m×m).

Exercise 9. Let V be a Banach space.

1. Show that if T ∈ L(V ) then eX defined by

eX =

∞∑
k=1

1

k!
Xk , (2.178)

defines a linear operator in L(V ).

2. Show that eX+Y = eXeY whenever X and Y commute, i.e. XY = Y X .

3. Show that eX is invertible and (eX)−1 = e−X .

4. Show that the (non-linear) map X 7→ eX is differentiable and compute the derivative (eX)′. Show
that

(eX)′ 6= eX . (2.179)

Exercise 10. Show that lp 1 ≤ p <∞ is separable but that l∞ is not separable.

Exercise 11. To show that (l∞)′ 6= l1 consider the subspace c and define a function λ on c by

λ(ξ) = lim
n→∞

ξn . (2.180)

Show that λ extends to functional on l∞ and deduce from this that (l∞)′ 6= l1.

Exercise 12. Let V and W be normed vector spaces and T ∈ L(V,W ). If T−1 exists and is bounded show
that (T−1)′ = (T ′)−1.

Exercise 13. To illustrate the Hahn-Banach theorem and its consequences:

1. For Corollary 2.39, consider the functional λ on the euclidean plane R2 given by λ(ξ) = α1x1+α2x2,
its linear extensions λ̃ to R3 and the corresponding norms λ̃.

2. For Corollary 2.40, let V = R2, find the functional λ.

Exercise 14. Let V , W be normed vector spaces and {Tn} a sequence of bounded operators.

1. Suppose V is a Banach space. Show that if {Tn} converges strongly to T then T is a bounded operator.

2. If V is not complete then T need not to be bounded. To see this let E ⊂ l∞ be the subspace of
sequence which contains only a finite number of nonzero terms and define A by

T (x1, x2, · · · ) = (x1, 2x2, 3x3, · · · ) (2.181)

Show that A is not bounded but can be written as the strong limit of a sequence bounded operators.
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Exercise 15. Let V , W be Banach spaces and {Tn} a sequence of bounded operators. Show that the
sequence {Tn} converges strongly to a bounded operator T if

1. The sequence {‖Tn‖} is bounded.

2. The sequence {‖Tnξ‖} converges for ξ in a dense set in V .

Hint: Use the first part of previous exercise.

Exercise 16. 1. Show by an example that in Baire’s category theorem the completeness condition cannot
be omitted.

2. Show by an example that in Baire’s category theorem condition of the countability of the decomposi-
tion (see Eq. (2.126)) cannot be omitted.

Hint: Do not look for complicated metric spaces.

Exercise 17. (Weak convergence) Let V be a normed vector space. We say that a sequence {ξn} converges
weakly to ξ if

lim
n
λ(ξn) = λ(ξ) (2.182)

for all λ ∈ V ′. Show the following properties of weak convergence

1. The weak limit of {ξn}, if it exists, is unique.

2. If ξn converges weakly to ξ then ‖ξn‖ is bounded. Hint: Use the uniform boundedness theorem.

3. If ξn converges to ξ then ξn converges to ξ weakly but the converse is not necessarily true. Hint: Try
a separable Hilbert space or lp....

4. Show that in finite dimensional spaces weak convergence and strong convergence are equivalent.

5. Show that if {ξn} is a sequence such that (i) supn ‖ξn‖ ≤ c < ∞ and (ii) limn λ(ξn) = λ(ξ) for a
dense set of λ in V ′ then ξn converges weakly to ξ.

6. Show that if V = lp, p > 1, then ξn converges weakly to ξ if and only if the sequence {‖ξn‖} is
bounded and limn x

(n)
k = xk for all k. (Here we have denoted ξn = (x

n)
1 , x

(n)
2 , · · · ...))

7. Show that in l1 weak convergence and strong convergence are equivalent.

Exercise 18. In this problem we call a map an open mapping if for any open set O ⊂ V the image T (O) is
an open set of T (V ).

1. Suppose N is a closed subspace of a Banach space V and consider the quotient space quotient V/N .
Show that V/N can be made into a Banach space with the norm

‖ξ̂‖ = inf
η∈ξ̂
‖η‖ . (2.183)

2. Show that if V is a Banach space then any λ ∈ V ′ is an open mapping. Show also that if T : V →W
has finite-dimensional range then T is an open mapping. Hint: Use part 1.

3. Find an example of a bounded linear map which is not an open mapping.
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Exercise 19. Let V and W be Banach spaces and T : V → W a bounded linear maps such that the range
of T , R(T ) is finite-codimensional subspace of W . Show that R(T ) is closed.
Hint: Use the closed graph theorem. Extend T to V ⊕ Z such that the range of T is all of W .

Exercise 20. Suppose V is a Banach space, Y and Z closed complementary subspaces of V such that
V = Y ⊕Z. Let PY be the projection on Y along Z and PZ be the projection on Z along Y . Show that PY
and PZ are continuous.
Hint: Use the closed graph theorem
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Chapter 3

Spectral theory

3.1 Spectrum and resolvent
Let us first recall the spectral theory in finite-dimensional space (linear algebra). For T ∈ L(Cn), λ ∈ C
is called an eigenvalue of T if T − µ1 is singular, i.e., if det(T − µ1) = 0. The set of eigenvalues of T is
called the spectrum of T . Since det(T − µ1) is a polynomial of order n then the spectrum of T contains
at least one point and at most n points. If µ is an eigenvalue, then the eigenvalue equation Tξ = µξ has
at least one non-trivial solution. Such solutions are called eigenvectors for the eigenvalue λ. If µ is not an
eigenvalue then T − µ1 is regular and so (T − µ1)−1 exists.

In infinite dimensional vector spaces is the spectral analysis hugely more complicated, but also much
more interesting than in finite-dimensional spaces. From a practical point of view understanding the spec-
trum of an operator is essential part of understanding the operator itself!

Convention/notation: V is a complex vector space and T ∈ L(V ). For µ ∈ C we set

Tµ = T − µ1 (3.1)

Definition 3.1. Let T ∈ L(V )

1. µ is a regular value of T if Tµ is bijective. (Hence T−1
µ ∈ L(V ) by the inverse mapping theorem).

2. The resolvent set of T, denoted by ρ(T ) is the set of regular values of T ,

ρ(T ) = {µ ∈ C : µ regular value of T} , (3.2)

and the resolvent of T is
Rµ(T ) = (T − µ1)−1 (3.3)

3. The spectrum of T is
σ(T ) = C \ ρ(T ) , (3.4)

and λ ∈ σ(T ) is called a spectral value.

41



42 CHAPTER 3. SPECTRAL THEORY

4. µ ∈ σ(T ) is called an eigenvalue of T if the equation

Tξ = µξ (3.5)

has a non-trivial solution ξ ∈ V . Such a solution ξ is called an eigenvector for the eigenvalue µ and
the subspace

Eµ(T ) = {ξ ; Tξ = µξ} (3.6)

is called the eigenspace of T for the eigenvalue µ. The point spectrum of T is

σp(T ) = {µ ; µ eigenvalue of T} (3.7)

5. The continuous spectrum of T is

σc(T ) = {µ ∈ σ(T ) \ σp(T ) ; Dµ = Tµ(V ) is dense in V and T−1
µ exists, but is unbounded}

(3.8)

6. The residual spectrum of T is

σc(T ) = {µ ∈ σ(T ) \ σp(T ) ; Dµ = Tµ(V ) is not dense in V } (3.9)

We clearly have

Lemma 3.2. The sets σp(T ), σc(T ), and σr(T ) are mutually disjoint and

C = ρ(T ) ∪ σ(T ) = ρ(T ) ∪ σp(T ) ∪ σc(T ) ∪ σr(T ) (3.10)

It is not immediately obvious that σr(T ) is not empty.

Example 3.3. Let T be the right shift operator on l2, i.e for ξ = (x1, x2, · · · ) we have

Tξ = (0, x1, x2, · · · ) . (3.11)

Then 0 is a spectral value since T (l2) = {ξ ; x1 = 0} is not dense in l2. On T (l2) the inverse if the left
shit Sξ = (ξ2, ξ3, · · · ). On the other hand 0 is not en egenvalue since the equation Tξ = 0 only the trivial
solution ξ = 0. So 0 ∈ σr(T ).

Example 3.4. Let T be the multiplication operator on L2[0, 1] given by

Tf(t) = tf(t) . (3.12)

We have ‖Tf‖2 =
∫
t2|f(t)|2 dt ≤ ‖f‖2 showing that ‖T‖ ≤ 1. it is left to the reader to prove that

‖T‖ = 1. note that

• If µ /∈ [0, 1] then µ ∈ ρ(T ). Indeed we have

Rµf(t) =
1

t− µ
f(t) (3.13)

and ‖Rµ‖ ≤ dist(µ, [0, 1])−1
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• If µ ∈ [0, 1], µ is not eigenvalue since tf(t) = µf(t) has only the solution f(t) = 0 a.e.

• If µ ∈ [0, 1], then Tµ(L2[0, 1]) is dense since it contains all L2 functions which vanish in some
neighborhood of t0 = µ. Then T−1

µ f(t) = (t− µ)−1f(t) is defined on a dense set but unbounded.

Thus we have
σ(T ) = σc(T ) = [0, 1], σp(T ) = σr(T ) = ∅ (3.14)

The map

R·(T ) : ρ(T ) −→ L(V )

µ 7−→ Rµ(T )

is an operator-valued function on the resolvent set ρ(T ). We first investigate in this function can be under-
stood as an ”analytic” function in some way. Since L(V ) is a Banach space we need to develop a bit the
theory of analytic Banach-spaced valued functions.

Definition 3.5. Let Ω ⊂ C be an open set, V a Banach space and

ξ(·) : Ω −→ V (3.15)

a map with valued in the Banach space V .

1. The map ξ(z) is called strongly differentiable at z0 ∈ Ω if

ξ′(z0) = lim
h→0

1

h
(ξ(z0 + h)− ξ(z0)) (3.16)

exists. The map ξ(z) is called strongly analytic in Ω if it is strongly differentiable at any z ∈ Ω.

2. The map ξ(z) is called weakly differentiable at z0 ∈ Ω if for any linear functional λ ∈ V ′ the complex
valued function

z 7→ λ(ξ(z)) (3.17)

is differentiable at z0. The map ξ(z) is called weakly analytic in Ω if it is weakly differentiable at any
z ∈ Ω.

We have

Theorem 3.6. A Banach-space valued map ξ(z) is strongly analytic if and only if it is weakly analytic.

As a warm-up we have

Lemma 3.7. Let {ξn} be a sequence in the Banach space V . Then the sequence {ξn} is Cauchy if and only
if the sequence {λ(ξn)} is Cauchy, uniformly for all λ ∈ V ′, ‖λ‖ ≤ 1.
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Proof. On one hand we have ‖λ(ξn)− λ(ξm)‖ ≤ ‖λ‖|ξn − ξm‖ = ‖ξn − ξm‖ for ‖λ‖ ≤ 1. On the other
hand we have ‖ξn − ξm‖ = sup‖λ‖=1 |λ(ξn)− λ(ξm)| by Theorem 2.42.

Proof of Theorem 3.6. Clearly strongly analytic implies weakly analytic. So let us assume that ξ is weakly
analytic in Ω ⊂ C, let z0 ∈ Ω and Γ a circle around z0 contained in Ω. For any λ ∈ V ′ we have by Cauchy
Theorem

λ

(
ξ(z0 + h)− ξ(z0)

h

)
− d

dz
λ(ξ(z0)) =

1

2πi

∫
Γ

[
1

h

(
1

z − (z0 + h)
− 1

z − z0

)
− 1

(z − z0)2

]
λ(ξ(z) dz .

(3.18)
Since λ(ξ(z)) is continuous on Γ there exists a constant cλ such that

sup
z inΓ

|λ(ξ(z))| ≤ cλ (3.19)

So the family of

ξ(z) ; V ′ −→ C
λ 7−→ λ(ξ(z)) (3.20)

for z ∈ Γ is a point wise bounded family of linear maps (use the isomorphism V → V ′′). From the uniform
boundedness theorem there exists a c <∞ such that

sup
z∈Γ
‖ξ(z)‖ = c (3.21)

So we can bound (3.18) by

|(3.18)| ≤ 1

2π
c‖λ‖

∫
Γ

∣∣∣∣[ 1

h

(
1

z − (z0 + h)
− 1

z − z0

)
− 1

(z − z0)2

]∣∣∣∣ d|z ≤ Const|h|‖λ‖ (3.22)

Therefore 1
hλ(ξ(z0 + h)− ξ(z0)) converges uniformly in λ for all λ with ‖λ‖ ≤ 1. By the previous lemma

this implies that 1
h (ξ(z0 + h)− ξ(z0)) is Cauchy for |h| → 0. This concludes the proof.

The theorem just proved is very useful since it allows us to speak simply of analytic Banach-space valued
functions. All the theorem from analytic function theory can be used since they apply to the ordinary analytic
function λ(ξ(z)) and so we can ”lift” these results to the strongly analytic function ξ(z).

Theorem 3.8. Let V be a Banach space and T ∈ L(V ).

1. ρ(T ) is an open set in C.

2. The resolvent µ 7→ Rµ(T ) is analytic in ρ(T ).

Proof. We use the Neumann series (see Theorem 2.23). if µ0 ∈ ρ(T ) consider the open ball

Ω0 =
{
µ : |µ− µ0| < ‖Rµ0‖−1

}
. (3.23)
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We have

Tµ = Tµ0 − (µ− µ0)1

= Tµ0 [1− (µ− µ0)Rµ0 ] . (3.24)

Since ‖(µ− µ0)Rµ0‖ < 1 we can invert Tµ and using Neumann series we obtain

Rµ = [1− (µ− µ0)Rµ0
]
−1
Rµ0

=

∞∑
k=0

(µ− µ0)kRk+1
µ0

. (3.25)

This is a convergent series in L(V ) and so Rµ exist for µ ∈ Ω0 and so Ω0 ⊂ ρ(T ). The power series also
shows that Rλ is is analytic.

Theorem 3.9. Let V be a Banach space and T ∈ L(V ). Then the spectrum σ(T ) is closed and non-empty.

Proof. As the complement of ρ(T ), the spectrum σ(T ) is closed. By contradiction let us assume that σ(T )
is empty. Then ρ(T ) = C and Rµ is an entire function. For |µ| ≥ ‖T‖ we have the convergent series

Rµ(T ) = (T − µ1)−1 = −µ−1(1− µ−1T )−1 = −µ−1
∞∑
k=0

(µ−1T )k (3.26)

and

‖Rµ(T )‖ ≤ |µ|−1
∞∑
k=0

‖µ−1T‖k =
µ−1

1− ‖µ−1T‖
. (3.27)

and thus ‖Rµ(T )‖ −→ 0 as |µ| → ∞. Hence Rµ(T ) is is a bounded entire function and by Liouville
Theorem it as to be constant and identically null. But this is impossible and so σ(T ) is not empty.

Eq. (3.26) also shows that

Corollary 3.10. We have
σ(T ) ⊂ {µ : |µ| ≤ ‖T‖} (3.28)

This can be strengthened into the following theorem which justifies the terminology spectral radius for
r(T ).

Theorem 3.11. Let V be a Banach space and T ∈ L(V ). Then we have

r(T ) = sup
µ∈σ(T )

|µ| = max
µ∈σ(T )

|µ| (3.29)

Proof. The series (3.26) is nothing but the Laurent series for Rµ (expansion in power of 1/µ around ∞).
From complex analysis we know for a power series f(z) =

∑
n≥0 anz

n with convergence radius r converges
absolutely for |z| < r but is not analytic in {|z| < (r + ε)}. For the power series (3.26) this means that the
series converges exactly outside the circle of radius supν∈σ(T |ν|.

We also know that the convergence radius of a power series is given by the formula

r−1 = lim sup
n→∞

|an|1/n, (3.30)
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that is in our case
r−1 = lim sup

n→∞
‖Tn‖1/n = lim

n→∞
‖Tn‖1/n = r(T ) (3.31)

Finally note that since the spectra is closed we can replace the sup by a max.

Note that L(V ) in addition of being a Banach space is also an algebra with the property that ‖TS‖ ≤
‖T‖‖S‖. So we can certainly define polynomial of an element of L(V )

p(T ) =

N∑
k=1

akT
k (3.32)

or more generally for entire function f(z) =
∑
n anz

n we can define

f(T ) =

∞∑
k=1

anT
n (3.33)

Note also that the formula (3.33) makes sense if f has a convergence radius larger than the spectral radius
r(T ).

In order to be more general we do not use a power series but instead use Cauchy integral formula.

Definition 3.12. Let T ∈ L(V ), f(z) a function analytic in a domain Ω containing σ(T ). LetC be a contour
in Ω∩ ρ(T ) such that C winds once around any point in σ(T ) and winds zero time around any point in ΩC .
Set

f(T ) =
1

2πi

∫
C

(z − T )−1f(z)dz = − 1

2πi

∫
C

Rz(T )f(z)dz . (3.34)

Note that the definition does not depend on the choice of C.

As a preparation for the next theorem we prove

Lemma 3.13. (Resolvent formula)

Rµ(T )Rν(T ) =
Rµ(T )−Rν(T )

µ− ν
(3.35)

Proof. We have
(T − µ1)− (T − ν1) = (ν − µ)1 (3.36)

and so multiplying by RµRν we have

Rν −Rµ = (ν − µ)RµRν . (3.37)

The next theorem provides the basis for the functional calculus.

Theorem 3.14. (Functional calculus and spectral mapping theorem) Let T ∈ L(V ).

1. If f is a polynomial or analytic in a disk of radius greater than σ(T ) then the definition (3.34) coin-
cides with the formulas (3.32) and (3.33).
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2. The map (3.34) from the algebra of analytic functions on an open set containing σ(T ) into L(V ) is a
homomorphism.

3.
σ(f(T )) = f(σ(T )) (3.38)

4. If f is analytic in an open set containing σ(T ) and g is analytic in an open set containing f(σ(T )). If
h = g ◦ f then

h(T ) = f(g(T )) (3.39)

Proof. 1. Using the representation Rµ(T ) = −
∑∞
k=0 µ

−k−1T k we obtain by Cauchy integral formula

Tn = − 1

2πi

∫
C

(T − z1)−1zndz (3.40)

and this shows that the formulas coincide.
For 2. we note that the mapping f 7→ f(T ) is obviously linear. To show it is multiplicative we use the

resolvent formula of Lemma 3.13. If f and g are analytic in a domain containing σ(T ) we pick two contours
C and D as in definition 3.12 with D lying inside C. Then we have

f(T )g(T ) =

(
1

2πi

)2 ∫
C

∫
D

Rz(T )Rw(T )f(z)g(w)dzdw

=

(
1

2πi

)2 ∫
C

∫
D

Rz(T )−Rw(T )

z − w
f(z)g(w)dzdw

=

(
1

2πi

)2 ∫
C

[∫
D

(z − w)−1g(w)dw

]
Rz(T )f(z)dz

−
(

1

2πi

)2 ∫
D

[∫
C

(z − w)−1f(z)dz

]
Rw(T )g(w)dw (3.41)

Since D lies inside C we have
∫
D

(z − w)−1g(w)dw = 0 while
∫
C

(z − w)−1f(z) = 2πif(w) and thus

f(T )g(T ) = −
∫
D

Rw(T )f(w)g(w)dw . (3.42)

and thus f(T )g(T ) = h(T ).
For 3. we have to show that µ belongs to the spectrum of f(T ) if and only if µ is of the form

µ = f(ν) , ν ∈ σ(T ) . (3.43)

If µ is not of the form (3.43), then f(z) − µ does not vanish on σ(T ). Therefore g(z) ≡ (f(z) − µ)−1 is
analytic in an open set containing σ(T ). According to part 2. (f(T ) − µ1)g(T ) = h(T ) = 1. So g(T ) is
the inverse of (f(T )− µ) and so µ /∈ σ(f(T )).

Conversely suppose that µ is of the form (3.43). Define k(z) by

k(z) =
f(z)− f(ν)

z − ν
. (3.44)
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The function k(z) is analytic in an open set containing σ(T ) so k(T ) can be defined using by (3.34). Since
(z − ν)k(z) = f(z)− f(ν) by part 2. we have

(T − ν1)k(T ) = f(T )− f(ν)1 . (3.45)

Since ν ∈ σ(T ) the first factor is not invertible and so f(T )− f(ν) is not invertible either.
For 4. by assumption g(w) is analytic on f(σ(T )). Since by 3. the spectrum of f(T ) is f(σ(T )) we can

apply (3.34) to g in place of f and f(T ) in place of T :

g(f(T )) =
1

2πi

∫
D

(w1− f(T ))−1g(w)dw (3.46)

If w ∈ D then w − f(z) is an analytic function on σ(T ), then applying (3.34) again

(w − f(T ))−1 =
1

2πi

∫
C

(z1− T )−1(w − f(z))−1dz (3.47)

provided C does not wind around any point of D. Combining the tow formulas we find

g(f(T )) =

(
1

2πi

)2 ∫
D

∫
C

(z − T )−1(w − f(z))−1g(w)dzdz . (3.48)

We interchange the order to the integral and since D winds around every point z ∈ C we have by Cauchy
integral formula

1

2πi

∫
D

(w − f(z))−1g(w)dw = g(f(z)) = h(z) . (3.49)

Setting this back in (3.48) we find that g(f(T )) = h(T ).

Suppose σ(T ) can be decomposed into N pairwise disjoint closed components:

σ(T ) = σ1 ∪ · · · ∪ σN , σj ∩ σk = ∅ (3.50)

Since the σi are closed they are at positive distance from each other and we can pick contours Cj that winds
once around each point of σj but not σk, k 6= j. We set

Pj =
1

2πi

∫
Cj

(z1− T )−1dz (3.51)

Theorem 3.15. The Pj are disjoint projections, i.e.

P 2
j = Pj and PjPk = 0 for j 6= k (3.52)

and we have ∑
j

Pj = 1 . (3.53)

Proof. Pick open set Ωi such that Ωi contains σi and the Ωi are pairwise disjoint. Set Ω =
⋃N
j=1 Ωj . Then

consider the function fi(z) which is equal to 1 in Ωi and 0 in Ω \ Ωi. These functions are analytic in Ω and
satisfy fi(z)2 = fi(z) as well as fifj = 0 for i 6= j. By functional calculus we obtain the theorem.
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Theorem 3.16. Let V be a Banch space and T ∈ LV and let T ′ ∈ L(V ′) it adjoint. Then

σ(T ) = σ(T ′) (3.54)

Corollary 3.17. If T is a bounded operator on a Hilbert space and T ∗ its (Hilbert-)adjoint. Then

σ(T ∗) = σ(T ) (3.55)

We need the following lemma. For a bounded linear operator T we denote N(T ) the nullspace of T and
R(T ) the range of T . For a subspace W ⊂ V we define the annihilator of W , denoted by W⊥ as the set of
linear functional which vanish on W . For a subset W ′ of V ′ we define the annihilator of W ′ (denoted by
W ′ ⊥) as the set of all vectors in V annihilated by all functional in W ′.

Lemma 3.18. We have
N(T ′) = R(T )⊥ , N(T ) = R(T ′)⊥ (3.56)

Proof. Use the duality relation λ(Tξ) = T ′λ(ξ). The details are left as an exercise.
The theorem 3.16 is an immediate consequence of

Theorem 3.19. T ∈ L(V ) is invertible if and only if T ′ ∈ L(V ′) is invertible.

Proof. IF T is invertible with inverse S then

TS = ST = 1V . (3.57)

Taking the adjoint gives
S′T ′ = T ′S′ = 1V ′ (3.58)

which shows that S′ is the inverse of T ′. If V is a reflexive space then the relation between T and T ′ is
symmetric so the proof is complete. In case V is not reflexive an additional argument is needed. If T ′ is
invertible then by taking adjoint

T ′′S′′ = S′′T ′′ = 1V ′′ (3.59)

Since T ′′ and IV ′′ restricted to V are equal to T and IV respectively it follows that the nullspace of T is
trivial and so T is one- to-one. So S′′ restricted to the range of T is inverse to T . Suppose now that the range
of T is not all of V . Then we can find by Hahn- Banach a non-zero functional λ ∈ V ′ with λ = 0 on the
range of T . According to the previous lemma such a functional belongs to the nullpsace of T ′. Since T ′ is
invertible this is impossible.

Example 3.20. We return to the shift T : l2 → l2 given by Tξ = (0, x1, x2, · · · ) with adjoint Sξ =
(x2, x3, · · · ). We claim that

σ(T ) = σ(S) = {z ∈ C : |z| ≤ 1} (3.60)

It is easy to check that ‖L‖ = 1 and similarly that ‖Ln‖ = 1 for all n and thus r(T ) = 1. So no number z
with |z| ≥ 1 belongs to σ(S). Next let us try to find eigenvalues for L: (x2, x3, cdots) = µ(x1, x2, cdots)
which implies

xn = µn−1x1 (3.61)

We have then
∑
n |xn|2 < ∞ if and only if |µ| < 1. So any µ in the open disk {z : |z| < 1} is an

eigenvalue. Since the spectrum is closed then σ(S)is the close unit disk. Finally the spectrum of T is the
same as the spectrum of S. The reader should check whether T has any eigenvalues.
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Example 3.21. Nilpotent and quasi-nilpotent operators
An operator is called nilpotent if Nk = 0 for some k > 1. Then σ(Nk) = {0‖ and by the spectral

mapping theorem σ(N) = {0}.
The Voltera operator acting on C[a, b]

Kf(t) =

∫ t

0

K(s, t)f(t) dt (3.62)

with continuous kernel k(t, s) was shown to have spectral radius r(T ) = 0 in the exercises. Therefore

σ(K) = {0}. (3.63)

An operator K with σ(K) = {0} but Nk 6= 0 for all k is called quasi-nilpotent.

Example 3.22. Fourier transform The Fourier transform T is defined by

f̂(k) = Tf(k) =

∫
R
f(x)e−i2πxk (3.64)

As we have show in Math 623/624 T is an invertible norm preserving map from L2(R) onto L2(R). The
inverse is given by

f(x) =

∫
R
f̂(k)ei2πxk dk . (3.65)

Consider the mapping R given by
Rf(x) = f(−x) , (3.66)

and obviously R2 = 1. From (3.65) we have

f(−x) =

∫
R
f̂(k)e−i2πxk dk . (3.67)

So we have T 2 = R and thus
T 4 = 1 (3.68)

By the spectral mapping theorem we immediately obtain that

σ(T ) ⊂ {+1,−1,+i,−i} (3.69)

More details on the spectrum of T will be given in the HWK.

3.2 Compact operators: Basic properties
One of the workhorse of analysis in finite-dimensional spaces is the Bolzano-Weierstrass theorem which
asserts that that a set is compact if and only if it is closed and bounded. In infinite dimensional spaces this
theorem fails.

Theorem 3.23. The closed unit ball of a Banach space V is compact if and only if V is finite dimensional.
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Before we prove the theorem note that if H is a separable Hilbert space with an orthonormal basis {ξn}
then we have

‖ξn − ξm‖2 = (ξn − ξm, ξn − ξm) = ‖ξn‖2 + ‖ξm‖2 = 2 . (3.70)

and so the sequence ξn satisfies ‖ξn‖ = 1 for all n and ‖ξn − ξm‖ =
√

2 for n 6= m. Hence {ξn} has no
convergent subsequence and so the unit ball is not compact.

In order to adapt this argument to a general Banach space we need the following lemma.

Lemma 3.24. Let V be a Banach space and W a proper closed subspace of V . Then there exists

ζ ∈ V with ‖ζ‖ = 1 and ‖ζ − η‖ > 1/2 for all η ∈W . (3.71)

Proof. Since W is a proper there exists ξ ∈ V with ξ /∈W and since W is closed

inf
η∈W

‖ξ − η‖ = d > 0 . (3.72)

We pick η0 ∈W such that ‖ξ − η0‖ ≤ 2d and set ζ ′ = ξ − η0. Then we have

‖ζ ′‖ ≤ 2d and ‖ζ ′ − η‖ = ‖ξ − (η + η0)‖ ≥ d for all η ∈W. (3.73)

Finally we set ζ = ζ ′/‖ζ ′‖ so that ‖ζ‖ = 1 and

‖ζ − η‖ > 1/2 for all η ∈W. (3.74)

Equipped with this lemma we obtain easily

Proof of Theorem 3.23. Let {ξn} be the sequence constructed inductively as follows. Pick an arbitrary ξ1
with ‖ξ1‖ = 1. Then if Vn is the subspace spanned ξ1, · · · , ξn, it is a closed proper subspace since it is
finite-dimensional and thus by Lemma 3.24 there exists ξn+1 with ‖ξn+1‖ = 1 and ‖ξn+1 − ξl‖ > 1/2 for
l = 1, · · · , n. The sequence {ξn} does not have a convergent subsequence.

A bounded operator has the property to maps bounded sets into bounded sets. A operator will be called
compact if it transforms bounded sets into sets whose closure compact. To make this precise we recall

Definition 3.25. Let X be a complete metric space. The set S is called precompact if its closure S is
compact.

• S is precompact if and only if any sequence {ξn} ⊂ S contains a Cauchy subsequence.

• S is precompact if and only if for any ε > 0 S can be covered by finitely many balls of radius less
than ε.

Definition 3.26. Let V and W be Banach spaces.

1. A linear map T : V → W is called compact if the image of the unit ball T (B1(0)) is precompact.
(This is implies that T maps any bounded set into a precompact set.)

2. We denote by C(V,W ) the set of all compact operators and set C(V ) ≡ C(V, V )
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Let us derive some of the elementary properties of compact operator.

Theorem 3.27. Let U, V, and W be Banach spaces.

1. If T, S ∈ C(V,W ) then T + S ∈ C(V,W )

2. If T ∈ C(V,W ) and α ∈ K then αT ∈ C(V,W ).

3. If T ∈ C(U, V ) and S ∈ L(V,W ) then ST ∈ C(U,W )

4. If T ∈ L(U, V ) and S ∈ C(V,W ) then ST ∈ C(U,W )

5. If {Tn} is a sequence in C(V,W ) with ‖Tn − T‖ → 0 then T ∈ C(V,W ).

This means that the set of compact operators is a closed subspace of the vector space of bounded opera-
tors and that C(V ) is a closed two-sided ideal in the algebra L(V ).

Proof. For 1. let {ξn} be a sequence in B1(0) then since T is compact there exists a subsequence {ξnk}
such that {Tξnk} converges. Since S is compact there exists a subsubsequence {ξnkj } such that {Sξnkj }
and {(T + S)ξnkj } converges too.

2. is a special case of 3. and 3. itself follows from the fact that a bounded map maps precompact set into
precompact sets. In turn 4. is obvious.

For 5. given ε > 0 we pick n such that ‖Tn−T‖ ≤ ε/2 and since Tn is compact then Tn(B1(0)) can be
covered by finitely many balls of radius ε/2. Then T(B1(0)) can be covered by finitely many balls of radius
ε.

Definition 3.28. Let V and W be Banach spaces. A linear operator T ∈ L(V ) is a finite rank operator if its
range R(T ) is finite dimensional.

Clearly finite-rank operators are compact. A finite rank operator T ∈ L(V,W ) can always be written as
follows. Pick η1, · · · , ηN ∈W and λ1, · · · , λN ∈ V ′ and set

Tξ =

N∑
j=1

λj(ξ)ηj (3.75)

In general it is not true that the set of finite rank operators is dense in the set of compact operators even
on separable Banach spaces. It is true in Hilbert spaces as well as in many standard Banach spaces. We
will prove this property for separable Hilbert spaces in the next section. As we will see in examples one can
sometimes prove that an operator is compact by proving that it can be approximated by finite-rank operators.

We conclude this section with a first series of examples of compact operators. In order to prove com-
pactness we will use two classical results of analysis. The first one characterizes compact sets for spaces of
continuous functions.

Theorem 3.29. (Arzela-Ascoli) Let K be a compact metric space and let C(K) the Banach space of
complex-values continuous functions with norm ‖f‖ = supx∈K |f(x)|. Let {fα}α∈I be a collection of
function such that

1. {fα} is uniformly bounded: there exists c <∞ such that supα ‖fα‖ ≤ c.
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2. {fα} is equicontinuous: given ε > 0 there exists δ > 0 such that

d(x, y) ≤ δ =⇒ ‖fα(x)− fα(y)‖ ≤ ε for all α ∈ I (3.76)

Then the family {fα} is a precompact subset of (C(K).

A related theorem gives a compactness criterion for L2(Q) where Q is a bounded domain.

Theorem 3.30. (Rellich) Let Q be open and bounded with smooth boundary. Let {fα}α∈I be a family of
functions in L2(Q) such that

1. The family {fα} is uniformly bounded: there exists c <∞ such that supα ‖fα‖ ≤ c.

2. The derivative of {fα} are uniformly bounded: there exists c < ∞ such that supα ‖∂xifα‖ ≤ c for
i = 1, 2, · · · , d.

Then the family {fα} is a precompact subsets of L2(Q).

Example 3.31. (Integral operator I) Consider the integral operator

Tf(t) =

∫ b

a

k(t, s)f(s) ds . (3.77)

If k(t, s) ∈ C[a, b] × [a, b] then we show that T : C[a, b] → C[a, b] is compact. Let {fn} be a bounded
sequence, e.g. ‖fn‖ ≤ 1 for all n, then we show that the sequence {Tfn} satisfies the conditions of Arzela-
Ascoli theorem. We have

|Tf(t)− Tf(t′)| ≤
∫ b

a

|k(t, s)− k(t′, s)||f(s)| ds

≤ ‖fn‖︸︷︷︸
≤1

∫ b

a

|k(t, s)− k(t′, s)| ds (3.78)

By the continuity of k(t, s) the right hand side of (3.78) goes to 0 as t→ t′ uniformly in n and thus {Tfn}
is an equicontinuous family.

Example 3.32. (Integral operator II) Consider an integral operator on some separable Hilbert space
L2(X,µ)

Tf(t) =

∫
k(t, s)f(s) dµ . (3.79)

with k(t, s) ∈ L2(X ×X,µ× µ). It was proved in the exercise that T is bounded with

‖T‖ ≤
(∫ ∫

|k(t, s)|2dµ(t)dµ(s)

)1/2

. (3.80)

We show that T is compact by showing that is it the limit of a sequence of finite-rank operators. Note
that a finite rank integral operators has the form

Tf(t) =

N∑
j=1

fj(s)

∫
gj(s)f(s) ds (3.81)



54 CHAPTER 3. SPECTRAL THEORY

for some fj , gj ∈ L2. We now expand the k(t, s) (for fixed s) using an o.n.b. {fj} of L2 we have

k(t, s) =

∞∑
j=1

fj(t)kj(s) , kj(s) =

∫
k(t, s)fj(t) dµ(t) (3.82)

By Parseval equality we have ∫
|k(t, s)|2dµ(t) =

∞∑
j=1

|kj(s)|2 (3.83)

and ∫ ∫
|k(t, s)|2dµ(s)dµ(t) =

∞∑
j=1

∫
|kj(s)|2dµ(s) . (3.84)

Let us define

kN (t, s) =

N∑
j=1

fj(t)kj(s) (3.85)

and define TNf(t) =
∫
kN (t, s)f(s)dµ(s). This is a finite rank operator and we have by the same calcula-

tion has for ‖T‖

‖T − TN‖2 ≤
∫ ∫

|kN (t, s)|2dµ(t)dµ(s) =

∞∑
j=N

∫
|kj(s)|2dµ(s) (3.86)

Because of (3.83), the right side of (3.86) goes to 0 as N → ∞. Hence T as the limit of a sequence of
finite-rank operators is compact.

Example 3.33. (Laplace equation) It is well known that the boundary value problem

∆u = f in Q u = 0 on ∂Q (3.87)

has a unique solution u for every f ∈ C∞(Q). Let us denote by S the linear map

u = Sf (3.88)

which gives the solution of (3.87). We claim that S defines a compact map from L2(Q) into L2(Q).
We have

Lemma 3.34. Let f be compactly supported in Q. Then we have∫
|f |2dx ≤ C

∫ ∑
j

|fj |2dx with fj ≡ ∂xjf . (3.89)

Proof. Since f vanishes on the boundary of Q we have, at any point x ∈ Q

f(x) =

∫ x

xb

f1dx1 (3.90)
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where xb is a point on the boundary of Q with the same x2, · · · , xd coordinates as x. By Cauchy-Schwartz
we have

f(x)2 ≤ d

∫
|f1|2dx , (3.91)

and integrating over Q gives the result.

Let us denote ‖f‖0 = ‖f‖L2 and ‖f‖1 = (
∫ ∑

j |fj |2dx)1/2. Then the lemma asserts that ‖f‖0 ≤
c‖f‖1 for smooth. Now multiply (3.87) by u, integrate over Q and integrate by parts:

−
∫ ∑

j

|uj |2 dx =

∫
Q

fu dx (3.92)

Using Cauchy-Schwartz and the lemma this yields

‖u‖21 ≤ ‖f‖0‖u‖0 ≤ , c‖f‖0‖u‖0 . (3.93)

from which we obtain
‖u‖1 ≤ c‖f‖0 , and ‖u‖0 ≤ , c2‖f‖0 . (3.94)

This shows that the image of the unit ball {‖f‖0 ≤ 1} is mapped by S to solutions u which satisfies the
conditions of Theorem 3.30. Hence S is a compact map.

Example 3.35. (Heat equation) Let us consider the heat equation (initial value problem)

ut = ∆u , u(x, 0) = u(x) (3.95)

for function u(x, t), with x ∈ Q a bounded open domain with smooth boundary and t > 0. It is well-known
that the initial value problem where u(x, 0) = u(x) is given has a unique solution for all t > 0. Let us
denote by ST the operator mapping the initial condition to the solution at time T

ST (u) = u(x, T ) (3.96)

We have

Theorem 3.36. The map ST : L2(Q)→ L2(Q) is compact for any T > 0.

Proof. Multiply (3.95) by u and integrate with respect to x ∈ Q and t ∈ [0, T ]. After integrating by parts
one gets ∫ T

0

∫
Q

uutdxdt =

∫
Q

1

2
|u|2(x, T ) dx−

∫
Q

1

2
|u|2(x, 0) dx

=

∫ T

0

∫
Q

u∆u = −
∫ T

0

∫
Q

∑
j

|uj |2 dxdt ≤ 0 (3.97)

and thus ∫
Q

|u|2(x, T ) dx ≤
∫
Q

|u|2(x, 0) dx (3.98)



56 CHAPTER 3. SPECTRAL THEORY

i.e. the L2 norm of u is decreasing in t or
‖ST ‖ ≤ 1 . (3.99)

Next let us multiply (3.95) by t∆u and integrate with respect to x and t. We get∫ T

0

∫
Q

tut∆u dxdt =

∫ T

0

∫
Q

t(∆u)2 dxdt ≥ 0 (3.100)

Integrating by parts the left side of (3.100) with respect to x and then t we find∫ T

0

∫
Q

tut∆u dxdt = −
∫ T

0

∫
Q

t
∑
j

utjuj dxdt

= −1

2

∫ T

0

∫
Q

t
d

dt

∑
j

|uj |2 dxdt

=
1

2

∫ T

0

∫
Q

d

dt

∑
j

|uj |2 dxdt−
T

2

∫
Q

|uj(x, T )|2 dx (3.101)

Combining with (3.97) we find

T

2

∫
Q

|uj(x, T )|2 dx ≤ 1

2

∫ T

0

∫
Q

d

dt

∑
j

|uj |2 dxdt

=
1

2

∫
Q

|u(x, 0)|2 dx− 1

2

∫
Q

|u(x, T )|2 dx

≤ 1

2

∫
Q

|u(x, 0)|2 dx (3.102)

Combining (3.98) and (3.102) show that

‖STu‖0 ≤ ‖u‖0 ‖STu‖1 ≤
1

2T
‖u‖0 (3.103)

which implies that ST is compact by Rellich Theorem.

3.3 Spectral theory of compact operators
The general result is the following

Theorem 3.37. Let V be a Banach space and T ∈ L(V ) a compact operator.

1. Spectrum:

(a) If λ 6= 0 is in σ(T ) then λ ∈ σp(T ).

(b) σp(T ) is countable and the only possible accumulation point is 0 which may ar may not belong
to σp(T ).

(c) For λ 6= 0, the eigenspace Eλ = {ξ : Tξ = λξ} is finite dimensional.
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(d) The adjoint T ′ has the same eigenvalues and the eigenspaces have the same dimensions.

2. Fredholm Alternative: For Tµ = T − µ1 we have either (a) or (b)

(a) Tµξ = η and T ′µα = β have unique solutions ξ and α for every η ∈ V , β ∈ V ′. In particular if
η = 0, β = 0 then ξ = 0 and α = 0.

(b) Tµξ = 0 and T ′µα = 0 have n linearly independent solutions ξ1, ξn (resp. α1, · · · , αn) and
Tξ = η and T ′α = β have solution if and only if

αk(η) = 0 , k = 1, · · · , n resp. β(ξk) = 0k = 1, · · · , n (3.104)

We shall not prove this theorem here (see e.g. Lax for a proof) in full generality but we are going to
concentrate on the case of separable Hilbert spaces. We show first that finite rank operators are dense in
separable Hilbert spaces. This remains true for non-separable Hilbert spaces but maybe surprisingly this in
general not true even for separable Hilbert spaces, although this holds for many of the usual Banach spaces.

Theorem 3.38. Let H be a separable Hilbert space and T ∈ C(H). Then there exists a sequence of finite
rank operator {Tn} such that ‖Tn − T‖ → 0.

Proof. Pick an o.n.b {ξi} of H and let us set

Pnξ =

n∑
k=1

(ξ , ξk)ξk , Tn ≡ TPn . (3.105)

Then we have

‖T − Tn‖ = sup
‖ξ‖=1

‖(T − Tn)ξ‖

= sup
‖ξ‖=1

‖T (1− Pn)ξ‖

= sup
‖ξ‖=1,Pnξ=0

‖Tξ‖ ≡ λn (3.106)

Since Pn+1ξ = 0 implies Pnξ = 0 we have

λn+1 ≤ λn, , lim
n→∞

λn = λ exists . (3.107)

We need to show λ = 0. For any n let us pick ηn with ‖ηn‖ = 1, Pnηn = 0 and ‖Tηn‖ ≥ λn/2. We have

lim
n

(ηn , ξ) = 0 for all ξ ∈ H , (3.108)

and thus
lim
n

(Tηn , ξ) = (ηn, T ξ) = 0 for all ξ ∈ H , (3.109)

Suppose that limn ‖Tηn‖ 6= 0, then for any ε > 0 there exists a subsequence ηnk such that

‖Tξnk‖ > ε , k = 1, 2, · · · (3.110)

Since T is compact there exists a subsubsequence {ηnkj }such that {Tηnkj } is convergent, i.e.

lim
j
Tηnkj = η 6= 0 (3.111)
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But then
lim
j

(Tηnkj , η) = ‖η‖2 6= 0 (3.112)

which contradicts (3.109). Therefore we have limn ‖Tηn‖ 6= 0 and so λ = 0.

As preparation we have

Theorem 3.39. (Analytic Fredholm theory) Let Ω ⊂ C be a connected domain and T (·) : Ω→ C(V ) an
analytic operator-valued map taking value in the compact operators for all z ∈ Ω. Then we have one of the
two following alternatives

1. 1 is in the spectrum of T for all z ∈ Ω.

2. 1 ∈ ρ(T (z)) for all z ∈ Ω \ Σ where Σ is a discrete set without accumulation point. The resolvent
(T (z)−1)−1 is meromorph in Ω, analytic in Ω \Σ. The residue by the poles are finite rank operators
and for z ∈ Σ, T (z)ξ = ξ has a nontrivial solution space of finite dimension.

The proof of this theorem as well as the next few ones uses the following idea and a basic construction
which we now explain. The idea is to reduce the solvability of T (z)ξ = ξ to the solvability of f(z) = 0 for
some analytic function. Now we have either f ≡ 0 or f vanish on a discrete set. In order to do this we will
write f(z) has the determinant of some matrix obtained from a finite rank operator S(z) and the solvability
of T (z)ξ = ξ is equivalent to the solvability of T (z)ξ = ξ.

The basic construction is as follows: Given z0 ∈ Ω and z ∈ Ω0 ≡ {z : ‖T (z)− T (z0)‖ < 1/2} we pick
T̂ an operator of finite rank such that

‖T (z0)− T̂‖ < 1/2 (3.113)

Then
‖T (z)− T̂‖ < 1 , (3.114)

and
A(z) = (1− (T (z)− T̂ )) (3.115)

is invertible for z ∈ Ω0. We now consider the finite rank operator

S(z) = T̂A(z)−1 (3.116)

and note that
T (z)− 1 = (S(z)− 1)A(z) (3.117)

Proof of Theorem 3.39. With S(z) as in (3.117) we note that

T (z)− 1 invertible ⇐⇒ S(z)− 1 invertible. (3.118)

and
T (z)ξ = ξ has nontrivial solutions⇐⇒ S(z)ξ = ξ has nontrivial solutions (3.119)

Note that the range of S(z) = T̂A(z)−1 is always contained in H0 = R(T̂ ) which is independent of z and
dim (H0) = n <∞. We decompose

H = H0 ⊕H1 with H1 = H⊥0 (3.120)
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We have a unique decomposition ξ = ξ0 + ξ1 for any ξ ∈ H and if we write

ξ =

[
ξ0
ξ1

]
(3.121)

and we have the matrix-like representation

A =

[
A00 A01

A10 A11

]
, Aij ∈ L(Hj , Hi) . (3.122)

Since R(S(z)) = H0 we have (with Sij ≡ Sij(z))

S(z) =

[
S00 S01

0 0

]
(3.123)

and so

(S(z)− 1)ξ =

[
S00 S01

0 0

] [
ξ0
ξ1

]
=

[
(S00 − 1)ξ0 + S01ξ1

−ξ1

]
(3.124)

Therefore (S(z)− 1)ξ = 0 implies ξ1 = 0 and (S00 − 1)ξ0 = 0 and thus

dim {ξ : S(z)ξ = ξ} = dim {ξ0 : S00(z)ξ0 = ξ0} = n <∞ (3.125)

In particular S(z)ξ = ξ has a nontrivial solution if and only if

f(z) ≡ det(S00(z)− 1) = 0 . (3.126)

Since S00(z) can be represented as a n× n matrix and is analytic then f(z) is Ω0 and

Σ0 = {z ∈ Ω0 ; f(z) = 0} (3.127)

is either Ω0 or is a discrete set.
In conclusion if f(z) ≡ 0 in Ω0 then S(z)ξ = ξ has nontrivial solution for all z ∈ Ω0 and so does

T (z)ξ = ξ and 1 belong to the spectrum of T (z) for all z ∈ Ω0.
If f(z) 6≡ 0 then Σ0 = {z ∈ Ω0 ; f(z) = 0} is a discrete set without accumulation points and if z /∈ Σ0

we have

(T (z)− 1)−1 = A(z)−1(S(z)− 1)−1

= A(z)−1

[
(S00 − 1)−1 (S00 − 1)−1S01

0 −1

]
.

(3.128)

Since (S00 − 1)−1 = f(z)−1C for some analytic matrix C, (S00 − 1)−1 is meromorph in Ω0 with poles on
the zeros of f(z) and residuum of the form

Res(f(z)−1)

[
C CS01

0 0

]
(3.129)

which is of finite rank. The same holds for T (z).
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Lemma 3.40. Let T ∈ L(H) be compact. Then for µ 6= 0 the range R(T − µ1) is closed.

Proof. Replacing T by z−1T we need to show that R(T − 1) is closed. By (3.117) we have

(T − 1) = (S − 1)A (3.130)

and so R(T − 1) = R(S − 1). We also have

(S(z)− 1)−1 =

[
(S00 − 1)−1 (S00 − 1)−1S01

0 −1

]
(3.131)

Let {ηn} be a Cauchy sequence in R(S − 1), i.e.[
ηk0

ηk1

]
=

[
S00 − 1 S01

0 −1

] [
ξk0

ξk1

]
=

[
(S00 − 1)ξk0 + +S01ξk1

−ξk1

]
(3.132)

Therefore ξk1 is a Cauchy sequence and limk ξk1 = ξ1 and limk S01ξk1 = S01ξ1. Therefore (S00 − 1)ξk0

is a Cauchy sequence. Since dim (H0) <∞ then the range of (S00 − 1) is closed.

Lemma 3.41. Under the same assumptions as in Theorem 3.39 for z ∈ Ω we have

dimN(T (z)− 1) = dimN(T ∗(z)− 1) . (3.133)

Proof. Since T (z)− 1 = (S(z)− 1)A(z) we have N(T (z)− 1) = A(z)−1N(S(z)− 1). Also we have

(T (z)− 1)∗ = A(z)∗(S(z)− 1)∗ (3.134)

we have
dimN(T (z)∗ − 1) = dimN(S∗(z)− 1) . (3.135)

So it is enough to prove the theorem for S instead of T . Since

S =

[
S00 S01

0 0

]
(3.136)

we have N(S − 1) = N(S00 − 1). Since

S∗ − 1 =

[
S00 − 1 0
S∗01 −1

]
(3.137)

we have

0 = (S∗ − 1)

[
ξ0
ξ1

]
=

[
(S∗00 − 1)ξ0
S∗01ξ0

]
(3.138)

if and only if
ξ0 ∈ N(S∗00 − 1) and ξ1 = S∗01ξ0 . (3.139)

Thus we have

dimN(S(z)− 1) = dimN(S00 − 1) = dimN(S∗00 − 1) = dimN(S(z)∗ − 1) . (3.140)
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Lemma 3.42. For T ∈ L(H) the following are equivalent.

1. T is compact.

2. T ∗T is compact.

3. TT ∗ is compact.

4. T ∗ is compact.

Proof. 1. If T is compact, then T ∗ ∈ L(H) and so T ∗T and TT ∗ are compact.
2. If T ∗T is compact then for any bounded sequence ξn there exists a subsequence ξ′k = ξnk such that

T ∗Tξ′k converges. Then we have

‖T (ξ′k − ξ′l)‖2 = (T (ξ′k − ξ′l) , T (ξ′k − ξ′l)) = ((ξ′k − ξ′l) , T ∗T (ξ′k − ξ′l))
= ‖ξ′k − ξ′l‖‖T ∗T (ξ′k − ξ′l)‖ ≤ 2M‖T ∗T (ξ′k − ξ′l)‖ . (3.141)

and so Tξ′k converges and so T is compact.
3. Finally we have T ∗T compact⇒ T compact⇒ TT ∗ compact⇒ T ∗ compact.

We are now in the position to prove

Theorem 3.43. (Riesz-Schauder) Let T ∈ L(H) compact. Then we have

1. Every spectral point µ ∈ σ(T ), µ 6= 0 is an eigenvalue of T .

2. The point spectrum σp(T ) is countable, µ = 0 is the only possible accumulation point of σp(T ).

Proof. Let us set T (z) = zT . Then is zT analytic in C with values C(H). The conditions of Theorem 3.39
are satisfied with Ω = C. The first case cannot occur since 1 would be a spectral value of zT for all z, i.e.
1/z would be a spectral value of T for all z ∈ C and thus σ(T ) = C which is not possible for a bounded
operator.

Therefore the set
Σ = {z ; 1is not a singular value of T (z)} (3.142)

is a discrete set without accumulation point. Furthermore we have

z ∈ Σ⇔ zT − 1 not bijective ⇔ T − 1

z
1 not bijective (3.143)

So the set

σ̂(T ) =

{
µ ; µ =

1

z
with z ∈ Σ

}
(3.144)

is contained in σp(T ) (and is is equal to it if 0 ∈ σp(T )).

Theorem 3.44. (Fredholm alternative) Let T ∈ L(H) compact. Then we have for Tµ = T − µ1, µ 6= 0
of one the two options
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1.
Tµξ = η
T ∗µξ = η

}
has a 1d dimensional solution space (3.145)

Tµξ = 0
T ∗µξ = 0

}
has only the trivial solution (3.146)

2.

Tµξ = 0 has a solution space Mµ (dim (Mµ) <∞)

T ∗µξ = 0 has a solution space M∗µ (dim (M∗µ) = dim (Mµ))

Tµξ = η has a solution if and only if η ⊥M∗µ
T ∗µξ = η has a solution if and only if η ⊥Mµ

Proof. Let µ 6= 0. If µ 6∈ σp(T ) then 1. holds and ξ = Rµ(T )η is the unique solution of Tµξ = η. The rest
is obvious.

If µ ∈ σp(T ) then Mµ = N(Tµ) is the eigenspace of T for the eigenvalue µ and so dim(Mµ) < ∞
and dim(Mµ) = dim(M∗µ) by Lemma 3.41. It remains to show that Tµξ = η has a solution if and only if
η ∈ N(T ∗µ)⊥.

If Tµξ = η then for ζ ∈ N(T ∗µ) we have

(η, ζ) = (Tµξ, ζ) = (ξ, T ∗µζ) = 0 (3.147)

and so η ⊥ N(T ∗µ).
Conversely we show that if Tµξ = η has no solution then η /∈ N(T ∗µ)⊥. By Lemma 3.40, R(Tµ) ≡ H0

is closed. If Tµξ = η has no solution then there exists δ > 0 such that

inf
β∈H0

‖β − η‖ = inf
ξ∈H
‖Tµξ − η‖ = δ (3.148)

By Corollary chb3 to Hahn-Banach theorem the exists λ ∈ H ′ such that λ(η) = δ and λ(Tµξ) = 0 for all
ξ ∈ H . By Riesz representation theorem there exists ζ ∈ H such that

(η, ζ) = δ 0 = (Tµξ, ζ) = (ξ, T ∗µζ) for all ξ ∈ H . (3.149)

So T ∗µζ = 0 and so ζ ∈ N(T ∗µ). Since (η, ζ) = δ > 0 we have on one hand ζ 6= 0 and, on the other hand,
that η ∈ N(T ∗µ)⊥.

Before we pursue we we recall a few facts and definitions form Hilbert space theory.

• If T = T ∗ then the eigenvalues are of T are real and the eigenvectors for distinct eigenvalues are
orthogonal.

• T is called a positive operator if the quadratic form (Tξ, ξ) ≥ 0 (it is important to work in complex
vector spaces here!) and for positive operator every eigenvalue is nonnegative.

• If T = T ∗ from 2.56 we know that ‖T ∗T‖ = ‖T‖2 and so ‖T 2‖ = ‖T‖2. By induction ‖T 2n‖ =
‖T‖2n and thus r(T ) = infn ‖Tn‖1/n = ‖T‖.
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• T is called normal if T ∗T = T ∗.

Theorem 3.45. (Hilbert-Schmidt) Let T ∈ L(H) be compact and self-adjoint. Then there exists an or-
thonormal basis {ηi} of H such that Tηi = λiηi with limi λi = 0. If µ1, µ2, · · · are the pairwise distinct
eigenvalues of T and E1, E2, · · · the corresponding eigenspace of T . Then we have

H = E1 ⊕ E2 ⊕ · · · T =
∑
i

λPi (3.150)

where Pi is the orthogonal projection on Hi.

Proof. Eigenspaces for different eigenvalues are orthogonal, so we can choose in each eigenspace an or-
thonormal basis and this gives an orthonormal sequence {ηi}. Let H1 be the closed linear span of {etai}.
Clearly T maps H1 into itself. Let us write H = H1 ⊕ H⊥1 . and let us assume H⊥1 is not trivial. Since
T = T ∗ we have T maps H⊥1 into itself. Let T = T |H1

and T2 = T |H1⊥. The operator T2 is self-adjoint
and compact.

From Riesz-Schauder theorem if µ ∈ σ(T2) with µ 6= 0 then µ ∈ σp(T2). But then µ is also an
eigenvalue of T which is impossible. Therefore σ(T2) = {0} = ‖T2‖ and thus T2 = 0. So H⊥1 is
the eigenspace of T for the eigenvalue 0. But since all the eiegenspace for T are already in H1 we have
H⊥1 = 0.

We have previously developed a functional calculus to define f(T ) for general bounded operators and
were able to use functions f which are analytic in an open set containing σ(T ). For a compact self-adjoint
operator T we can define f(T ) for every function defined on the spectrum of A.

Theorem 3.46. (Functional Calculus) Let T be a compact self-adjoint operator and f a bounded complex-
valued function defined on σ(T ). To such an f we can define f(T ) such that

1. If f ≡ 1 then f(T ) = 1.

2. If f(x) = x then f(T ) = T .

3. The map f 7→ f(T ) is an isomorphism of the ring of bounded functions on σ(A) into the algebra
L(H).

4. The isomorphism is isometric:
‖f(T )‖ = sup

µ∈σ(T )

|f(µ)‖ (3.151)

5. If f is real-valued, f(T ) is symmetric.

6. If f is positive on σ(T ), then f(T ) is positive.

Proof. The proof is shorter than the statement. From Hlbert-Schmidt theorem we can pick an o.n.b. basis
{ηk} of eigenvectors such that Tηk = µkηk. If ξ ∈ H has the decompostion ξ =

∑
xi
ηi then define f(T )

by
f(T )ξ = f(µk)xkηk . (3.152)

The theorem is now obvious.

We also have
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Theorem 3.47. Suppose T1, · · ·Tn are bounded operators in L(H) such that

1. Tk is self-adjoint for k = 1, · · · , n.

2. T1 is compact.

3. TkTl = TkTl for all k, l.

Then there exists an orthonormal basis {ξi} of H such that ξi is an eigenvector for all Tk.

Proof. Let Si be the eigenspaces of T1 for the eigenvalue µi. Then by Hilbert-Schmidt theorem we have

H = S1 ⊕ S2 ⊕ · · · (3.153)

Then the subspace Si is invariant under Tk since if ξ ∈ Sim, then Tξ = µiξ then

T1Tkξ = TkT1ξ = µiTkξ (3.154)

and thus Tkξ ∈ Si. The restriction of T2 on Sn is finite-dimensional and thus we can choose a basis of Si
such that the basis elements are eigenvectors for T1 and T2 and we can repeat the arguments for T3, etc....
Since the Sn are finite dimensional the procedure will stop after a finite number of steps.

Corollary 3.48. If T is a normal operator then there exists an o.n.b {ξi} of H such that

Tξ =

∞∑
n=1

µn(ξ, ξn)ξn (3.155)

Proof. We write

T =
T + T ∗

2︸ ︷︷ ︸
≡R

+
T − T ∗

2︸ ︷︷ ︸
≡J

. (3.156)

Then T and J are compact, T is self-adjoint and iJ is self-adjoint.

Finally we consider non self-adjoint operators.

Theorem 3.49. Let Let T ∈ L(H) compact. Then there exists 2 sequences {ηi}Ni=1 and {ζi}Ni=1 in H (with
N finite or∞) and a sequence {νi} of non-negative numbers such that

T =

N∑
i=1

νi(· , αi)βi (3.157)

Proof. If T is compact then T ∗T is compact, self-adjoint, and positive. So there exists an orthonormal
sequence {ηi} such that

T ∗Tηi = µiηi (3.158)

with µi ≥ 0 and limi µi = 0. Moreover T ∗T restricted on the orthogonal complement to the span of the ηi
is equal to 0. Now let

νi =
√
µi (3.159)
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and set
ζi =

1

νi
Tηi . (3.160)

We have then

(ζi, ζj) =
1

νiνj
(Tηi, Tηj) =

1

νiνj
(ηi, T

∗Tηj) =
1

νiνj
µj(ηi, ηj) = δij (3.161)

and so the βi are orthonormal. For any ξ ∈ H we have

ξ =

N∑
i=1

(ξ, ηi)ηi + ξ⊥ . (3.162)

where T ∗Tξ⊥ = 0. This implies that

0 = (ξ⊥, T ∗Tξ⊥) = (Tξ⊥, T ξ⊥) = ‖Tξ⊥‖2 (3.163)

and so Tξ⊥ = 0. So we have

Tξ =

N∑
i=1

(ξ, ηi)Tηi =

N∑
i=1

νi(ξ, ηi)ζi , (3.164)

as claimed.

3.4 Applications

3.5 Exercises
Exercise 21. 1. Show that the Fourier transform T maps the space of function of the form p(x)e−πx

2

where P is a polynomial of degree ≤ n into itself.

2. Find the eigenfunctions of T .
Hint: With our conventions the Fourier transform of e−πx

2

is itself.

Exercise 22. Prove Lemma 3.18

Exercise 23. Show that if T is a normal operator (i.e., T ∗T = TT ∗) then r(T ) = ‖T‖.

Exercise 24. For T ∈ L(V ) let us define τ(T ) by

τ(T ) = max
µ∈σ(T )

Re (µ) (3.165)

i.e. the spectrum of T is contained in the half-plane {Re (z) ≤ τ(T )}. Show that we have

τ(T ) = lim
n→∞

ln ‖enT ‖
n

. (3.166)
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Exercise 25. Suppose T is bounded operator on a Hilbert space H such that Tξk = λkξk with ξk an
orthonormal basis of H . Show that T is compact if and only if λk → 0.

Exercise 26. Show that the operator Tf(t) =
∫ t

0
f(s) ds on C[0, 1] is compact and has no eigenvalues.

Give an example of an operator T on lp which is compact and has no eigenvalue.

Exercise 27. Consider the integral equation

f(t)− µ
∫ 1

0

k(t, s)f(s) ds = g(t) (3.167)

with a continuous k(t, s) and denote Tf(t) =
∫ 1

0
k(t, s)f(s) ds.

1. Let r(T ) be the spectral radius of T on C[0, 1]. Show that if |µ| < 1
r(T ) then (3.167) has a unique

solution which can be written in the form

f(t) = g(t) +

∫ 1

0

r(t, s)g(s) ds (3.168)

(the kernel (r(t, s) is called the resolvent kernel). Hint: Neumann series.

2. Compute the resolvent kernel and the solution for the integral equation

f(t) =
1

2

∫ 1

0

et−sf(s) ds+ g(s) . (3.169)

Exercise 28. Consider a kernel k(t, s) =
∑n
j=1 aj(t)b)j(s). Without loss of generality we may assume

that the aj and bj are linearly independent. Show that if the equation

f(t)− µ
∫ 1

0

k(t, s)f(s) ds = g(t) (3.170)

has a solution then it must be of the form

f(t) = g(t) + µ

n∑
j=1

cjaj(t), , cj =

∫ 1

0

bj(s)xj(s) ds (3.171)

and the constants cj must satisfy the linear equations

cj − µ
n∑
j=1

ajkck = yi , (3.172)

with

ajk =

∫ 1

0

bj(s)ak(s) ds , yj =

∫ 1

0

bj(s)y(s) ds (3.173)

Exercise 29. Consider the equation

f(t)− µ
∫ 1

0

(s+ t)x(t)dt = g(s) (3.174)
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1. Use the previous exercise to solve this equation if µ2 + 12µ− 12 6= 0.

2. Find the eigenvalues and eigenfunctions.

Exercise 30. Let H be a Hilbert space and T a self-adjoint compact operator with eigenvalues µk with
eigenvectors ξk. Consider the equation

(λ1− T )ξ = η (3.175)

for a given λ 6= 0 and η ∈ H given. Show that this equation has a solution if and only if η is orthogonal to
N(λ1− T ) and that the set of all solution general solution is given by

ξ = ξ0 + ζ (3.176)

where ζ ∈ N(λ1− T ) and

ξ0 =
1

λ
η +

1

λ

∑
µn 6=λ

µn
µn − λ

(η , ξn)ξn (3.177)

Hint: Consider separately the case where λ is an eigenvalue or not. Do not forget the show that ξ0 is
well-defined.
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