Functional Analysis and Applications
Lecture notes for MATH 797fn

Luc Rey-Bellet
University of Massachusetts Amherst

The functional analysis, usually understood as the linear theory, can be described as

Extension of linear algebra to infinite-dimensional
vector spaces using topological concepts

The theory arised gradually from many applications such as solving boundary value problems, solving
partial differential equations such as the wave equation or the Schrédinger equation of quantum mechanics,
etc... Such problems lead to a comprehensive analysis of function spaces and their structure and of linear
(an non-linear) maps acting on function spaces. These concepts were then reformulated in abstract form in

the modern theory of functional analysis. Functional analytic tools are used in a wide range of applications,
some of which we will discuss in this class.






Chapter 1

Metric Spaces

1.1

Definitions and examples

One can introduce a fopology on some set M by specifying a metric on M.

Definition 1.1. A map d(-,-) : M x M — Ris called a metric on the set M if for all £, ), { € M we have

1.
2.

3.

(positive definite) d(§,m) > 0 and d(€,n) = 0 if and if £ = n.
(symmetric) d(&,m) = d(n, €).
(triangle inequality) d(§,m) < d(¢,¢) + d((,€)

Example 1.2. Some examples of metric spaces

1.
2.

M = Cla,b] with d(f,g) = [ |f(t) — g(t)|? dt with 0 < p < oc.

M = Cla,b] with d(f, g) = maxse(a,) | f(t) — g(t)]

. For any measure space (X, p), M = LP(X, p) with d(f,g) = ||f — gl with 1 < p < c0.

Let M be the set of all infinite sequences £ = (x1, xa, - - - ) with z; € C. Then for p = (y1,y2,- )
d(€,n) = i (1> mimwl (1.1)
S\2) 14|z -y
defines a metric on M.

Let M be the set of all infinite sequences of 0 and 1: M = {& = (x1, 29, --); 2; € {0,1}}. Then

oo

d&mn) = Y (zi+y (mod)2)
i=1
= number of indices j at which £ and 7 differ 1.2)

defines a metric on M and is called the Hamming distance and is used in coding theory.

3
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6. A metric can be defined on arbitrary space M (without any linear structure), for example set

d(.n) = {? e (13)

and d is called the discrete metric and M a discrete space.
In a metric space (X, d) ones introduces naturally a concept of convergence as well as a topology.

Definition 1.3. 1. A sequence {&;} is called a Cauchy sequence if for any € > 0 there exists N so that
d(&;,&;) < eforalli,j > N (or shorter if lim; ;o0 d(&;,§;) = 0).

2. We say that ¢ is the limit of the sequence {;} (or that &; converges to &, or that lim; o, & = &) if

Definition 1.4. A metric space (M, d) is called complete if every Cauchy sequence {;} has a limit £ € M.
Theorem 1.5. The following metric spaces are complete.
1. Let M be a finite dimensional vector space with (arbitrary norm) || - || and metric d(&,n) = || — ||
2. M = LP(X,p0) with d(f,9) = | — g1l
3. M = Cla,b] with d(f, g) = maxcia |F(£) — g()].
Proof. Consult your class notes for Math 624. N

Definition 1.6. A brief reminder on some topological concepts.

e In a metric space (X, d)

B(§) = {n : d(&n) <r} (1.4)
is the open ball of radius r around ¢ and
B,(§) = {n : d(&,n) <r} (1.5)

is the closed ball of radius r around &
e Aset N C M is called bounded if there exist a ball B such that N C B.

e Aset N C M is called open if for every point £ € N there exists a open ball around £ contained in
N.

e Aset N C M is called closed if M \ N is open.

e For aset N C M the set N is the smallest closed set which contains N. The set IV is called the
closure of N.

e Aset N C M is called dense (in M) if N = M.

e Aset K C M is called compact (in M) if every sequence in K contains a convergent subsequence
with limit in K.
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1.2 Banach fixed point theorem

Problem 1.7. As a motivation imagine we want to solve the fixed point problem

F(§) =¢ (1.6)
where F' : M — M is some map (not necessarily linear).

The idea of the solution is simple. Pick a point £y and define the sequence &,, inductively by

¢ni1=F(&,). 1.7
If this sequence converges to £ and F' is continuous we have then
n—oo n—oo n—oo

and so ¢ is a solution of the fixed point problem.
We have the following

Theorem 1.8. (Banach Fixed Point Theorem) Let (M, d) be a complete metric space andlet F' : M — M
be a contraction, ie., there exists q € [0,1) such that for all §, n € M

d(F(§), F(n)) < qd(&,n)- (1.9

Then F has exactly one fixed point & = lim,, F™ (&) for arbitrary &.

Proof. We have
d(§n+17§n) S qd(F(é-n)aF(énfl)) S S q”d(glago) . (110)

Using that ¢ < 1 we have then

NE

d(£TL+’rrL7 g’n) =~ d(ﬁn-s-m gn-‘rk—l)

k=1
< ) gt &)
k=1
< o6 ). (L11)

Since (M, d) is complete, £ = lim,, o, &, exists.
To show that £ is a fixed point we note that

d(f(£),€) < d(f(£), f(&n)) + d(&nt1,€) < qd(§,&n) + d(E, Ent1) (1.12)

and the right hand side can be made arbitrarily small for n large enough.
Finally to show uniqueness, if £ and 7 are two fixed points then

d(&,m) = d(F(§),F(n)) < qd(&,n) <d(&mn)-. (1.13)

and this implies { = 7. W

Let us give a few applications of this theorem.
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Example 1.9. Let us try to solve the set of linear equation

Z QiR = 2k (1.14)
i=1
where zi, k = 1,--- ,nare givenand xx, k = 1, - - - ,n are unknown. We rewrite it as a fixed point equation
2= (ain + 0Tk — 2 (1.15)
k=1
or
§=F() (1.16)
where £ = (21, -+ ,z,) € R™ (or C") and
F&)=C¢+¢ (1.17)
where ¢ = (21, , 2,) and C'is the matrix with ¢; = a;r + .

To apply the Banach fixed point theorem we pick a metric on C" such that (C", d) is complete. For
example we can take d(§,n) = ||€ — ||, with p > 1 and then we have

d(F(§), F(n) = 1CE =)l (1.18)

For example if p = 1 we have

lceh = >

i

zk:cikxk < sz: |ci||lzx] < m’?ij: ek [I€]]1 - (1.19)
—_—————

=aq1

If we can find a norm such that ||C(€)]| < ¢||€|| then the equation (1.9) has a unique solution.
The fixed point equation has the form £ = C¢ + ¢ or (1 — C)¢ = ¢ which gives formally using a
Neumann series (which we will justify later)

E=1-C)y ¢ =0+C+0C%+-- ). (1.20)
Note also that the Banach fixed point algorithms gives the sequence
Snt1 = C& + ¢ (1.21)

and ¢ is the limit of &,, independent of the starting point &y. This iteration is easy to solve and gives

n—1
& = Cré+ Y C*¢ (1.22)
k=1
and thus, formally, we find
o0
_ . n k
¢= lim C S+ C*% (1.23)
k=1

The second term is exactly the Neumann series and the first term should go to 0.
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Example 1.10. (Fredholm integral equation) A very similar argument applies to the equation

—)\/kts s)ds + h(t) (1.24)
where we use the metric space C'a, b] with the maximum metric d(f,g) = [, b |f(t) — g(t)|dt. This is a
fixed point equation f = F(f) where
b
FUF)(#) = () + A / k(t,5) f(s) ds (1.25)
We have
b
d(F(f),F(g)) = max |[F(f)(t) - F(g)(t)] = max / Ak(t, s)(f(s) — g(s)) ds
€la,b) t€la,b]

IN

[A| (max/ |k(t, s |ds> d(f,g). (1.26)
Ea,

From the Banach fixed point theorem we deduce that the Fredholm integral equation has a unique solution

provided
-1

A < <max/ |k(t, s |ds> (1.27)

Example 1.11. (Solving differential equations) Consider an ordinary differential equation (initial value

problem)

dz(t) B
" = )o@ = w (1.28)

where f : R — R. It is easy to see that :(¢) is solution of (1.28]) on the interval [a, b] if and only if we have
fort € [a,b]

xz(t) = zo + /tf(x(s))ds, a<t<b. (1.29)

We can interpret this equation as a fixed point equation in M = {z € Cla,b] : z(0) = zo} whichis a
closed subspace of a Banach space and thus itself a Banach space. We define F' : M — M] by

Pla)(t) = m0—|—/ Fa(s))ds, a<t<b (1.30)

and thus x(t) is a solution of (1.28)) on the interval [a, b] if and only if F(z)(t) = z(t) for ¢ € [a, b].
In order to apply the Banach fixed point theorem we assume that f is globally Lipschitz, i.e., there exists
a constant L > 0 such that forall z,y € R

[f(z) = f(y)| < Llz —y| (1.31)

Then if we equip C'[a, b] with the maximum metric we have

d(F(z), F(y)) = sup |[F(z(t)) — F(y(t))| < sup / f(x (y(s))| ds

te(a,b] te(a,b]

< L[ kel - uo)| < Lo~ @) (o). (1.32)
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We can apply the Banach fixed point theorem provided ¢ = L(b — a) < 1. This means there is a unique
solution of the differential equation on a suitable interval [a, b] is b is sufficiently close to a.

There are many generalizations of this result to systems of differential equations or even partial differ-
ential equations and the Lipschitz condition can be somewhat relaxed too.

1.3 Exercises

Exercise 1. Let M be a complete metric space and let F' : M +— M. Suppose there exists a sequence a,, is
a sequence of non-negative numbers with > ° | a,, < oo and

d(F"™(z), F"(y)) < and(z,y). (1.33)
Show that F" has a unique fixed point.
Hint: Modify the proof of Banach fixed point theorem

Exercise 2. In this problem we consider the Volterra integral equation given by the fixed point equation
f=F(f) where

F)(#) = A / k(e $)/(5) ds + h(s) (134)

where h(t) € Cla,b] and k(t, s) € Cla,b] x Cla, b] are given. We will show that this equation has a unique
solution for any value of A (compare with the Fredholm integral equation).
Let K the Volterra integral kernel be given by

t

Kf(t) = )\/ k(t,s)f(s)ds (1.35)

1. Show that F*(f) = S0 K*h + K"f.
2. Prove that |[K" f(¢t)| < C"(t_ni‘!l)n sup, | f(t)| for a suitable constant C'.

3. Use the previous exercise to show the existence of a unique solution in C/a, b] to the Volterra integral
equation.

Exercise 3. Consider the differential equation (initial value problem)

dz(t)
dt

= f(x(t),2(0) = 2o (1.36)
where f : R — R is Lipschitz. Consider the metric space C[0, oo) with the metric

d(z,y) = supe P! f(1)]. (1.37)
t>0

Use this metric space for a suitable choice of D to show that the initial value problem (1.36) has a unique
solution for ¢ € [0, 00).



Chapter 2

Normed Vector Spaces

For general metric spaces (M, d) the set M has no structure besides the topology induced buy the norm. We
concentrate now on the special case where

M =V = vector space over K with K =R or C

2.1 Some concepts from linear algebra

We recall some basic concepts from linear algebra slightly generalized to vector spaces which may have
infinite dimension. In this section we do not use any topological concepts yet.

Definition 2.1. 1. A set M C V is called linearly independent if every finite subset of M is linearly
independent.

2. The set E C V is called a Hamel basis (algebraic basis) of V if E is linearly independent and every
vector £ € V can be written uniquely as finite linear combination of elements in E.

Using Zorn’s Lemma one can prove that
Theorem 2.2. Let M C V be linearly independent. Then V' has a Hamel basis which contains M.

We use the following notations: for N,M C V, £ € Vanda € K

E4+M = {{+n;ne My,
N+M = {{+n;6€NneM},
aM = {af; &€ M}.

Definition 2.3. 1. If M and N are subspaces of V and M N N = {0} then M + N is a subspace and
one write M + N as M & N (direct sum).

2. fV =M & N we say that M and N are complementary subspaces.

Proposition 2.4. To each subspace M C V there exists a complementary subspace N (not uniquely de-

fined).
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Proof. Let E; a Hamel basis of M and E' a Hamel basis of V' which contains Ej; (see the proof of Theorem
. Then E \ E)s generates a subspace N which is complementary to M. W
Definition 2.5. If V = M & N and dim/N = n < oo then we say that M has codimension n, i.e.,
codim M = dim M . 2.1)
One check easily that
Proposition 2.6. IfV = M & Ny = M & Ns. Then dim N1 = dimNo.
Definition 2.7. Suppose V = M @ N. Then any £ € V has a unique decomposition
¢=a+8 22)
with a € M, 8 € N. The projection of £ on M along N is given by
P¢=a. (2.3)
One verifies easily that
Lemma 2.8. We have P? = P.

Conversely we have

Lemma 2.9. Suppose P : V — V is linear map such that P> = P. Then V. = M & N where M = PV
and N = (1 - P)V.

Proof. For any £ € V we have

£= P¢+(1-P) 2.4)
eM EN

and thus V' = M + N. The sum is direct, since if
EeEMNN=PVN(1-P)V (2.5)
we have, on one hand, £ = P« and so
P¢ =P?a=Pa=¢. (2.6)
On the other hand £ = (1 — P)$ and so we obtain
E=P¢=P1—-P)B = (P-P)3=0. 2.7
Thus M NN ={0}. N

Using projections we can prove

Theorem 2.10. Suppose T : V — W is a linear map. Let P a projection on the nullspace of 7" and QQ a
projection along the range of T'. Then there exists a linear map S : W — V such that

ST =1y - P, TS = 1w —Q. 2.8)

The map T is bijective if and only P = () = 0.
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Proof. Let us denote N = N (T) C V the nullspace (or kernel) of 7" and and M = R(T) C W the range
of T'. We have
V=NoVi, W=weM. (2.9)

and P is the projection on N along V7 and @) the projection on W7 along M.
We define Ty : Vi — M by Tp€ = T€. Then Ty is bijective and so TO_1 : M — V) exists. If

S=T,'1-Q) : W =W (2.10)
we have
_J 0 ifgeV
STE¢ = { £ iffen (2.11)
and so
ST =1y — P. (2.12)
Arguing similarly we have
TS =1w — Q. (2.13)
|
2.2 Norm

Suppose we have a metric d on a vector space V. It is natural to ask whether the metric respects the linear
structure of V. By that we mean that

1. dis translation invariant, i.e., d(§ + a,n + «) = d(&,n) foralla € V.
2. Under scalar multiplication we have d(a&, an) = |ald(&,n).

Property 1. implies that d(£,n) = d(£—n,0). If we set then ||€]| := d(&, 0) we have then from the properties
of the distance that

(ND) ||€]l > 0 and £ = 0 if and only if £ = 0.
(N2) [[€]| = [ = €[ (symmetry)
(N3) (1€ +nll < lI€] + lInll

while from Property 2., instead of (N2’) we obtain the stronger

(N2) [[ag]| = la]lI<]

Definition 2.11. (Normed vector spaces)
1. Amap |- || : V — Ris called a norm on V if it satisfies the condition (N1), (N2), and (N3).
2. The pair (V, || - ||) is called a normed vector space.
3. A complete normed vector space is called a Banach space.

Note that in a normed vector space we have convergence in the sense of the metric defined by d(§,7n) =
|€ = n|| or equivalently &,, converges to £ if and only if lim,,_, o, ||€ — &,|| = 0.
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Example 2.12. We give examples of normed vector spaces (see Math 623-624 for details and proofs).

1. Forp > 1,

P = {f = (x1,22,23, -+ ) x; € Cwith ||£]|, == (Z ‘xi|p)1/p < oo}

(2.14)

is a Banach space. The completeness is non-trivial as is the triangle inequality (a.k.a Minkowsky

inequality).

2. The space
> = {5 = (21, x9,23, ) x; € C with [|{||o0 := qu|xi| < oo}

is a Banach space as well as
co = {€€l™, &= (v1,29,23,--+) limz; =0}
K3

and
c = {f €l & = (x1, 29,23, ) limay exists}
1

3. The space
C™a,b] = {f:]a,b] = R : f n times continuously differentiable }

is a Banach space with the norm

n

— () (¢
151 = 3 may 70
k=0

where f(*) is the k-th derivetive of f.

4. The space
BVla, b = {f:[a,b] = R : f of bounded variation }

is a Banach space with the norm
I = [f(@)] + V(F)

where V' (f) is the variation of f on [a, b] given by

where P is set of partition of [a,b]: a = 2 < 21 < -+ < 2, = b.
The following facts are very easy but also very important
Proposition 2.13. Let (V.|| - ||) be a normed vector space.
1. The linear operations are continuous

2. The map § — ||£]| is continuous.

(2.15)

(2.16)

2.17)

(2.18)

(2.19)

(2.20)

2.21)

(2.22)
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Proof. If &, — & and n,, — n then &, + tn,, — & + tn since

1€+ 8)n — (& +tnall < 11€ =&l + tlln — nall- (2.23)
If &, — £ then ||&, || — [|€]| since
el = lgalll < 1€ = &nll (2.24)
by the (reverse) triangle inequality. W
Definition 2.14. (Comparison of norms) Suppose two norms || - ||; and || - ||2 are given on a vector space

V.

1. The norm || - ||1 is stronger than || - ||z if there exists C' > 0 such that for all £ € V.

€]z < C€ll (2.25)
2. The The norms || - ||; and || - || are equivalent if there exists constants C' and D such that
D&l < llgllz < Cligll - (2.26)

Clearly equivalent norm induce the same topology since convergence of one sequence in one norm
implies the convergence of the sequence in the other norm.

Theorem 2.15. If dim(V) < oo then all norms on'V are equivalent.

Proof. : This is left as an exercise. Use Bolzano-Weierstrass.

2.3 Continuous linear maps

Let (V| - |lv) and (W, || - |lw) be two normed vector space. In the sequel, whenever there is no risk of
confusion we shall drop the index V' or W from the norm and simply denote it by || - ||. We also consider a
linear map

T:V-oW. (2.27)

Unless explicitly specified we will deal only with linear maps in the sequel. We also use the notation 7°¢ for

T(¢)
Definition 2.16. LetT : V — W be a linear map.

1. The map T is bounded if there exists a constant C' > 0 such that
1Tl < Clel (2.28)
forall¢ € V.
2. The norm of T, denoted by ||T'|| is the smallest C' such that holds, i.e.

T¢
I7l = swp VRS e (2.29)
ceviezo €]l cev|éll=1
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3. The set of bounded linear maps is denoted by
LV, W) = {T : V. — W, T linear and bounded} (2.30)

and we write
L(V):=L(V, V). (2.31)

Theorem 2.17. Let T be a linear map. Then T is bounded if and only if T' is continuous.
Proof. Suppose T' is bounded, then we have
IT€ =T nll = T =)l <ITI§—nl (2.32)

and this implies that 7" is (Lipschitz) continuous.
Conversely let us assume that 7" is continuous but not bounded. Then there exists a sequence &, such
that

1TEnll > nl|&nll- (2.33)
Let us set
=
V[l
Then we have )
7]l = T [Tl > nllna.ll = vVn. (2.34)

This means that 7,, — 0 but I'n,, is divergent which contradicts the continuity of 7. W

Example 2.18. Let us consider some examples of bounded (and not bounded operators). Many more exam-
ples to come.

1. The identity operator 1 defined by 1£ = £ is bounded with ||1|| = 1.

2. The differentiation operator is not bounded. Take for example the space V' which consists of polyno-
mials p(t) on [0, 1] with the sup-norm and set T'p(t) = p’(¢). Then if p,, (t) = 2™ we have ||p,|| = 1
for all n but ||T'p,,|| = |[nt"~!|| = n and this shows that 7" is not bounded.

Note that differentiation is a very natural operation so to include it in our consideration we will con-
sider unbounded linear operator later on.

3. The integral operator
b
TFE) = / k(t, 5)f(s) ds (2.35)
is bounded on C|a, b] equipped with the sup-norm if (¢, s) € C([a,b] x [a,b]). Indeed we T f(¢) is
continuous in ¢ by e.g. the dominated convergence theorem and
b b
76 = sup| [ kt,9)f(s)ds| < supl(s)|sup [ [k(t.5)] ds 236

=C
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and C is finite since & is continuous. Actually we can show that ||T|| = sup, f: |k(t,s)|ds. If
k(t, s) is nonnegative then we simply take f = 1 and we have || T'1|| = sup, f: |k(t,s)|ds. For a
general k we pick ¢g such that sup, f; |k(t,s)|ds = f; |k(to, )| ds. Then we would like to pick

the function f(s) = signk(to, s) so that Tf(to) = [*k(to,s)f(s)ds = [ |k(to,s)|ds. But this
f is not continuous and we need to use an approximation argument. Consider the function ¢,,(t)
which is piecewise linear, increasing, continuous, with ¢(t) = signt¢ if [t| > 1/n. We set f,,(s) =
odn(k(to, s)). We have

b b
T (to) :/ k(to,s)fn(s)ds:/ |k:(t0,s)\ds—%(b—a). (237)

From this it follows that || T’|| = fab |k(to,s)|ds. N

4. The Fourier transform is defined by
f(k) = / flx)emr2mhe, (2.38)
R

and we write 7(f) = f. In Math 623-624 ones proves (after some effort) that 7' : L'(R,dz) —
Cy(R) is a bounded operator with norm 1. Here C(R) is the Banach space of continuous functions
such that lim,|_,o [f(2)| — 0 equipped with the sup-norm. One also proves (after some more
effort) that 7 : L?(R,dz) — L?(R,dx) defines an unitary transformation (i.e. T is invertible and

ITfII = [I£1] for al f).
Theorem 2.19. L£(V, W) is a normed vector space.
Proof. LetT, S € V and a a scalar.

e (N1) We have ||T|| > 0. If ||T'|| = 0 then we have || T¢|| < ||T|||I€|| = 0 and so T' = 0. Conversely if
T = 0 then obviously ||T'|| = 0.

o (N2) [[oT = S laT¢]| = |al Sup ITE[l = lall|T]]
=1 =1

o (N3) [[(T + S)¢ll < T[]l + [15¢] and thus [T+ S| < [|T[| + [5]].
|

Theorem 2.20. If W is a Banach space then L(V, W) is a Banach space.
Proof. Let T,, be Cauchy sequence in £(V, W). For any £ € V we have

1Tn€ = Tkl < (170 — Tonl1I€]l (2.39)
and thus 7),¢ is a Cauchy sequence in W. Since W is complete this sequence has a limit in W and we set

n = lim T,¢ (2.40)

n—0o0



16 CHAPTER 2. NORMED VECTOR SPACES

We define then 7' : V' — W by T¢ = n. The linearity of 7,, immediately implies that 7" is linear. What
remains to prove is that 7" is bounded and 7,, — 7. Given € > 0 pick IV such that for n,m > N we have

10 = Tkl < 1T — Ton[1€]] < €& (2.41)
Using the continuity of the norm and taking m — oo in (2.41) we have
ITn€ = TE| < ell€]l (2.42)

for any n > N. This implies that |7 — Ti|| < e and so |T|| < ||T — Tn|| + [|[Tw]] < oo and so T is
bounded. This also implies that || T — T, || < eforn > N andsoT,, — T.

Theorem 2.21. For S € L(U,V)and T € L(V,W) we have TS :=T oS € L(U,W) and

ITSI < TSI (2.43)

Proof. ||TS|| = Sup, IS¢l < 7] Sup, ISEl = IThs)- m

Corollary 2.22. For T € L(V) we have
L) < [

2. The limit r(T) = lim | T™||*/™ exists and is called the spectral radius of T.
n— oo
3. r(T) = mf TV < |7

Proof. 1. is immediate. For 2. and 3. set ¢, = ||T"||/||T||". Then we have 0 < ¢,, < 1 and ¢4, < Cpem,
and this implies that c,, is a bounded decreasing sequence and so ¢ = lim,,_, o, exists. Therefore c,ll/ ™ is
also a decreasing with limit
N e ]
lim ——— = inf ————— (2.44)
n—oo T no T
[ ]

The notation spectral radius” will become clear in the sequel.

As an application we consider the Neumann series which is is a generalization of the geometric series.
Suppose V' is a Banach space, T € L(V) with |T|| = § < 1. Then the series >, , T* converges since
since the partial sum S,, = Z:io T* satisfy for n. > m

n n 1
IS0 = Smll < 32 ITHI < Yo S <ot (2.45)
k=m+1 k=m+1

and thus form a Cauchy sequence and we have lim,, S, = ), _ Tk,
Furthermore we have
1-17)S, =S5,1-T)=1-T"" -1 (2.46)

and thus we conclude that 1 — 7' is invertible and
Q-1 =y 71" (2.47)
k=0

One can prove the stronger result
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Theorem 2.23. Let V be a Banach space and T € L(V) with v(T) < 1. Then (1 — T)~! exists and is
given by the Neumann series

1-7)"t = ZT"’ (2.48)
k=0

Proof. Note first that Y 75 converges whenever >°, ||T%|| does. If r(T) = § < 1 then for any §’ with
§ < &' < 1 there exists N such that for n > N we have || 7"||'/™ < §’. This means that || 7" < (6')" and
s0 >, |T*|| converges. The rest is as before. W

Linear operators occur naturally as derivative and this is true in infinite-dimensional spaces as well.

Definition 2.24. Let V and W be normed vector spaces and U C V open. The map F' : U — W is said to
be differentiable at ny € U if there exists a continuous linear map F”(a) such that

F(&) =F(n) + F'(n)(§—n) + REIE—nl, (2.49)
where R : U — W satisfy lim¢_,, R(§) = 0.
Let is consider a few examples

Example 2.25. 1. Let V. = W = Cla,b] and let k¥ € C[0,1] x [0,1] and ¢ be twice continuously
differentiable. Let us consider the map

Pla)(t) = / k(t, $)g(x(s)) ds (2.50)

To compute the derivative we pick i € C[0, 1] and using the mean value theorem we obtain

F(z+h)— F(x)

b
/ k(t,s)[g(x(s) + h(s)) — g(z(s))] ds
b
= / k(t,s) {g’(z(s))h(s) + %g"(a(s))h(s)2 ds (2.51)

where a(s) is a value between z(s) and x(s) + h(s). This computation shows that the linear F’(x) :
C[0,1] — €0, 1] given by

b
F'(x)(h)(t) =/ k(t,s)g' (x(s))h(s) ds (2.52)

is a good candidate for the derivative. Clearly this map is bounded since k(t, s)g’(x(s)) € C[0,1] x
[0, 1]. Moreover we have the bound

b
/k%k(t,s)g”(a(s))h(s)zds < C|n|? (2.53)

sup
t

since ¢”’ is bounded by assumption. This shows that F' is differentiable. W
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2. Let E be a Banach space and consider the Banach space L(E). We say that T’ € £(E) is an isomor-
phism if T is linear, bijective, continuous and if A~! is continuous. We will see in fact in Section 2.8
that by the open map theorem the continuity of A~! follows from the other assumptions.

In any case the set
GL(E) = {T € L(F) :,T an isomorphism} (2.54)

is an open subset of £(E). Indedd if T is an isomorphism then 7"+ H is an isomorphism provided
|H|| < ||IT~Y|~!. This follows from 7'+ H = T(1+ T~ 'H), from [T~ H| < [T Y| H| < 1
and from the geometric series.

Let us consider the map F' : GL(E) — L(FE) given by
F(T) =T, (2.55)

We claim that the F' is differentiable and that we have
F'(T)H = —T 'HT'. (2.56)

The continuity of F’(T') is clear since we have ||F'(T)H|| < ||A~!||?||H||. Furthermore we have

F(T+H)-FT) = (T+H)'-7T"=[1+T"'H)-1]T""!
Sy @.57)

if |H|| < ||T7'||~! (geometric series). The first term in the series is —7 ! HT~! and the remainder
can be bounded by |71 H||(1 — ||T-||||H]|)~*. The reminder divided by ||H|| tends to 0,
showing the differentiability. W

Pointwise (strong) convergence: In £(V, W), in addition to norm convergence ( = uniform convergence)
there is the weaker notion of point wise convergence.

Definition 2.26. Let {7},} a sequence in L(V, W) and T" € L(V, W). We say that T}, converges strongly to
T and write

T =s— lim 7T, (2.58)
n—oo
if for any £ € V' we have
lim T,,§ = T¢. (2.59)
n—oo

Whenever we need to differentiate between different types of convergence we will write n —lim, o0 Th,
for the convergence in norm.
The following two lemmas are very easy and the proof is left to the reader.

Lemma 2.27. Ifn —lim, oo 1y, = T then s —lim, T, = T.
Lemma 2.28. The linear operations are continuous with respect to strong convergence.

However note that if n — lim,, o, T;, = T then T, || — ||T|| but this does not necessarily hold in the
case of strong convergence. Similarly if n — lim,, .7, = T and n — lim, ., S, = S then we have
n — lim,_, ST, = ST but this does not necessarily hold for strong convergence.
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Example 2.29. Let V = [P and for £ = (z1, za, - - - ) let us set
T.§ = (z1,--+ ,2,0,0,---). (2.60)
Then we have T,,§ — & — 0 and so s — lim,, ,, T,, = 1. Butsince
(1-T,)¢ = (0,--+,0,Zp41,Tny2, ) (2.61)

for any n we can find 7, with ||, = 1|| = 1 and (1 — T},)n,, = 1, This implies that |1 — T}, || = 1 for all
n and so n — lim,,_, o, T}, is certainly not equal to 1.

2.4 Linear functionals and dual spaces
Definition 2.30. If V' is a Banach space over K = R or C then £(V, K) is a Banach space. We write
V' = L(V,K) (2.62)

and V" is called the dual space. The elements of V' are called linear functionals on V and for A € V' the
norm is given by
[All = sup |A(E)]. (2.63)
eiss

Let us work out an example in detail

Example 2.31. If V =[P for p > 1 then V/ = [? where p~! + ¢! = 1.
Proof. Note first that if n = (y1,y2,---) € 19 then A, (&) defined by

A(&) = whun (2.64)
k=1
defines a bounded linear functional on [P since by Holder’s inequality we have
A (O] < li€llplinlly (2.65)
and 5o [|Ay || < {|l]-
Let us denote
er = {0in}i2, €17, (2.66)

Any ¢ € [P can be written as the convergent series in [P

£ = Z TkEk - (2.67)
k=1
Let A € V, since it is continuous, we have
AE) =D wrye with g, = Aex) - (2.68)
k

and we set 7 = {y;,} and A has the from \,,.



20 CHAPTER 2. NORMED VECTOR SPACES

Let us pick £™ = {2{™} with

O ‘ZJ’;' ifk<nandy, #0 . (2.69)
k 0 otherwise

‘We have then

A(E™)

Z|yk\q
k=1
A€l

n 1/p
1A (Z |x§;‘)p>
k=1

1/p
/\|< kal(q””>
1-1/q
= /\|< kalq> : (2.70)

n 1/q
(Z ykl"> < [|A. 2.71)

k=1

IN

WERIE

el
I

1

‘We obtain then

Since n is arbitrary we conclude that € [ and ||n||, < A. Combining with Holder’s inequality shows that
[|A, |l = ||n]lq and that the map A — 7 from (l,)’ to [ is a norm preserving isomorphism. W

Example 2.32. In a similar way one shows that L? (X, u) = L9(X, ) for an arbitrary measure space
(X,p)and 1 < p < 0.

Example 2.33. With some minor modifications the same proof works for /! and we have (/') = [,
However it is not true that (1°°)’ = [ but rather we have
' = (co) (2.72)

Proof. Letn € ' and £ € ¢y. Then the series A\, (§) = >, zxyx converges and by Holder’s equality we
have

An ()] < lIEllsc il - (2.73)
Thus we [|A, || < {|n[]:-
For any € > 0, let N be such that 3, - v [yx| < e. Pick then (V) = {z™} with

I;(,CN) _ o if k< n and y # 0 . (2.74)
0 otherwise
‘We have then
MO =D lukl = (IInlls = e)lI€]l - (2.75)

k>N
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Therefore [|Ay[| = |||y and so [[A,[| = [[n]]1.

It remains to show that every linear functional on ¢ has the above form. If £ € ¢y then we can write
€ = > po, Trex (not true in [°°!) and so for any A € ¢ there exists 7 = {y;} such that A(&) = X, (&) =
S, 2y Picking £ as in we have [|¢(™)|| o, = 1 and

1A (€)= (Z wl) 1€ oo (2.76)
k=1

from which we conclude that ||\, || > ||n]|1,ie.n €. N

Schauder basis and separability:
Definition 2.34. A metric space is called separable if it contains a countable dense set.

One shows that [ is separable but [*° is not separable.

In the construction of dual spaces we used the fact that any £ € [P, 1 < p < oo can be written uniquely

1/p
£ = aper, with[¢]l, = (va’) <00 (2.77)
k=1

k=1

as

In general we have

Definition 2.35. A countable subset B = {¢}} of a normed vector space V' is called a Schauder Basis of V
if each vector £ € V can be written uniquely as £ = >~ | k€.

Without difficulty one shows that

Lemma 2.36. A normed vector space which has a Schauder basis is separable.

It is a remarkable and deep fact that the converse does not hold: there exists Banach spaces which are
separable but do not have a Schauder basis. (See P. Enflo. A counterexample to the approximation problem
in Banach spaces, Acta Math 130, 309, (1973).)

2.5 Hahn-Banach theorem
As we will see a very important question in functional analysis is how to extend a functional defined on a

subspace W of a vector space V' to all V' while respecting some properties.

Theorem 2.37. Hahn-Banach (real vector spaces) Let V' a vector space over R andp : V' — R a convex
function on 'V, i.e. we have

p(a& + (1 —a)n) < ap(§) + (1 —a)p(n) (2.78)
Sforanya € [0,1] and all§,m € V.
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Let ¢ be a linear functional defined on the subspace W C 'V such that we have
d(&) < p(§) foralléeW. (2.79)
Then there exists a linear functional ® defined on V' such that

D) = (&) forallé € W.
() < p€) foralléeV. (2.80)

A very important example of a convex function p is a norm (or a semi-norm) on V, i.e., p(§) = |||

Proof. The idea of the proof is to show that one can extend ¢ from W to W + Ry for any £ ¢ W. The rest
follows from an applications of Zorn’s lemma.

Let us choose ¢ W and let denote W7 = W + Ry). By linearity it is enough to specify ¢ := ¢(n) to
define an extension ¢; on W since we have then

P1(§ +an) = ¢1(8) + agi(n) = &(£) + ac. (2.81)

To obtain the desired bound on ¢; we need that for all £ € W and a € R we must have

$1(§+an) = ¢(§) +ac < p(§+an). (2.82)

We restrict ourselves to a > 0. Then we looking for a ¢ such that

#(€) +ac < p(€+an)
<

¢(§) —ac p(§ — an)
or
o< L (ple+an) - 6(6)
¢ > o (p(e—an)+9(6)
(2.83)
Such a c exists provided we can prove that
1 . 1
el (=p(€ —an) +(§) < il = (p(§ +an) = 6(€)) (2.84)
that is
(b6 — )+ 6(60)) < = (bl6a -+ aan) — 9(62)) 2.85)

forall a;,as > 0and &;,& € W. Since a; and ay are non-negative this is equivalent to

az(&1) + a19(w2) < arp(§a — azn) + azp(§1 — a1n) . (2.86)
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On the other hand we have use the assumption
a2d(&1) + ar1p(x2) = ¢azdy + a1&2)
Qa a
= (a1+¢12)¢( 2 g+ — §2>

a1 + ag a1 + ag

< (a1+a2)p( = &+ 4 fz)

ay + as ai + az
as ay
= (a1 +a2)p (a1 T o, (& —a1m) + P (& + azn))
< agp(&r — ain) + arp(§2 + azn) . (2.87)

This is exactly and thus we have proved the existence of ¢ := ¢4 (7).

We now use Zorn’s lemma. Let A the set of all extension ¢ won ¢ auf some subspace Wy, with the
property that ¢ = ¢ on W and ¢(&) < p(&) for all { € Wy,. In A we can define a partial ordering through
1 < Yy if Wy, C Wy, and 91 = 12 on Wy,. Suppose B C A is totally ordered and define then ¥
on Uye pWy through ¥ (¢) = 9(€) on Wy,. By construction ¢ < ¥ for all ¢» € B and so B has an upper
bound. By Zorn’s lemma A has a maximal element ® which satisfies ® = ¢ on W and ®(¢) < p(£). Finally
Wa must be V since otherwise one could extend @ as before and this contradicts maximality. W

This theorem as an extension to complex vector spaces.

Theorem 2.38. Hahn-Banach (real vector spaces) Let V' a vector space over C and p : V- — R such that
we have p(a& + bn) < |a|p(§) + |blp(n) for any a,b € C with |a| + |b| = Land all{,n € V.
Let ¢ be a complex linear functional defined on the subspace W C V such that we have

|p(&)] < p(&§) forallé e W. (2.88)

Then there exists a linear functional ® defined on V' such that

&) = (&) forallé € W.
|2(&)] < pl¢) foralléeV. (2.89)

Proof. The functional ¢,.(£) = Re¢(&) is areal functional on V' viewed as a vector field over R. In addition

¢r(i€) = Red(i§) = Reip(§) = —Img(§). (2.90)
and so
¢(§) = ¢7(€) - 7;¢7' (7'5) . (2.91)

Conversely given any real linear functional ®, on V' let us define ®(§) = @,.(§) — i®,.(i€). It is certainly
linear over R and we have

(I)(Zg) = (I)T(zg) - Z(I)r(_f) = (I)r(lg) + Z(I)r(g) = 'L(I)(g) (2.92)

and so @ is linear over C.
By the real Hahn-Banach theorem we can extend ¢, to @, on V such that ®,.(§) < p(&) and ®(¢§) =
D,.(&) — 1D, (i) is complex linear. With § = arg® (&) we find

D) = e 0(§) = D(eE) = @r(e7) < ple”E) < Je [p(€) = p(§). (2.93)
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It is hard to overemphasize how important this theorem is for the foundations of functional analysis. Let
us first derive some corollaries and then discuss a number of applications.

Corollary 2.39. Let (V, || -||) be a normed vector space, W C V a subspace, and ¢ € W'. Then there exists
X € V' such that A = ¢ on W and ||| = ||¢].

Proof. Take p(§) = ||¢]/||£]| and apply Hahn-Banach. W

Corollary 2.40. Let (V.|| - ||) be a normed vector space, 0 # £ € V. Then there exists X € V' such that
M) = €]l and ||l = 1.

Proof. Let W = K¢ be the subpsace spanned by & and set ¢(a&) = al|¢]|. This is a linear functional with
l#]| = 1. Now use Corollary[2.39] W

Corollary 2.41. Let (V.| - ||) be a normed vector space, W C V a subspace. Let £ € V' be such that

inf |€—n|]|=d>0. 2.94
Jnf 1€ =l (2.94)
Then there exists X € V' such that |A|| = 1, A(§) = dand A(n) =0 forn e W.
Proof. Consider the subspace W7 = W @& K¢ and let define A\; on W; by

M(n+a€) = ad (2.95)

Clearly we have A\1(n) = 0 for n € W and A;(£) = §. The functional ), is linear and bounded with norm
1: using the assumption (2.94) we have

1 1
I +agll = —a(=—n =] = lalll = —n = ¢&ll = |ald = [M(n + ag)]] (2.96)

and so ||[A1]] < 1. On the other hand for € > 0 there exists 7 € W such that

S< €=l <o(1+e). (2.97)
Then we have
1
ME=n) =02 —l¢—al, (2.98)

thatis ||[A1]] > (1 + €)1 So |[A1|| = 1. Now use Corollary [2.39|for any ||£| there exists
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2.6 Applications of Hahn-Banach theorem

Dual and bidual spaces The Hahn-Banach space is useful to derive the properties of the dual space V' as
well as the bidual V" = (V')’ of a Banach space. First we derive a dual representation of the norm

Theorem 2.42. Let V be a normed vector space. Then we have

gl = sup 2 (2.99)

xeviazo (A
In particular if &y is such that M(§o) = 0 for all \ € V' then & = 0.
Proof. On one hand from |A(£)] < ||A]]|€]| we have

A

&l = e Do Al (2.100)
Using corollary [2.40] for a given fixed £ there exists A¢ € V’ such that || A|| = 1 and
e = Ae(e) = 2Ol (2.101)
[ Aell
|
The next results describe the relation between a Banach space V' and his bidual V.
Theorem 2.43. Let V be a normed vector space. For & € V define an element & € V"' by
EN) =), reV'. (2.102)
Then the map
J: Vv
£ € (2.103)
is an isometric isomorphism from'V to a subspace of V"'.
Proof. Since |£(N)] = [A(€)] < | Allv/||€]lv is € a bounded linear functional on V’ with
Il < lIEllv - (2.104)

This shows that J(V) C V" and it remains to show that ||¢||y» = [|€]|y. By corollaryMgiven ¢ there
exists Ae € V' such that A¢(§) = ||€||. Then we have

€llve = sup €N > €] = Ae(€) = 1€l - (2.105)
AEV/ IA|=1

Therefore J is an isometry of V onto its range. W

The following theorem suggest
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Definition 2.44. A Banach space V is called reflexive (or self-dual) if J : V' — V" is bijective.
With respect to separability we have

Theorem 2.45. A normed vector space V' is separable if V' is separable.
Proof. Consider a dense set { A, }x>1 in V” and for each k pick &, € V with ||{|| = 1 and such that

1
(&) > §H)\k”- (2.106)

Now let W be the countable set of finite linear combinations of the &;, with rational coefficients.
By contradiction let us assume that W is not dense and so there exists £ € V such that

inf —n|l=6§>0. 2.107
nf, € =mnl=6> (2.107)
By corollary there exists A € V' such that ||[A|| = 1, A(§) = § and A\l = 0. But since {)\} is dense
in V” there exists a subsequence Ay, such that lim; o ||A — Ag,|| = 0. On the other hand we have
1

-2

But this implies that lim; ||\, || and hence A = 0. This is a contradiction since 0 € W. N

Corollary 2.46. A separable Banach space V' with a non separable dual space V' cannot be reflexive.

Proof. If V were reflexive then V" = V would be separable and hence V' would be separable by Theorem

243 m

Example 2.47. Every Hilbert space is reflexive. From Riesz representation theorem (see Math 623-624)
a Hilbert space H is isometrically isomorphic to its dual H’ which is itself a Hilbert space. Hence H is
isometricaly isomorphic to its bi-dual H”'.

Example 2.48. [? is reflexive and separable (see hwk). On the other hand [°° is not separable (see HWK)
from which it follows by corollary that ! is not reflexive and hence (I1)" = (I°°)" # 1.

Example 2.49. Cla, b] is not reflexive since its dual space (Cf[a, b])’ is not separable. To see this note that
for any s € [a, b] the functionals

As(f) = f(s) (2.109)

satisfy || As]| = 1 and Ay — Ay || = 2. Since there are uncountably such functionals separability is excluded.

We shall not prove the following important and classical result (see your measure theory class for details).
Let us consider the Banach space M ([a, b]) of all finite complex Borel measures on [a, b] with total variation
norm |||l yer = f[a 0] d|p| as well as the Banach space N BV[a, b] of function of bounded variation with

F(a) = 0 with norm ||F'||ypv = V(F) where V (F) is the variation of F.
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Theorem 2.50. Any bounded linear functional A on Cla,b| can be written as

A(f) = fdp p Borel measure
[a,b]
= fdF  Lebesgue — Stieljes integral (2.110)
[a,b]
with
I = lllloar = Var(F). @.111)
Hence
(Cla,b]) = NBV|[a.b] = Mla,b]. (2.112)

Finally we construct the dual or adjoint operator to a bounded operator using Hahn-Banach theorem.

Definition 2.51. Let V and W be normed vector spaces and 7' : V' — W a bounded linear operator. Then
the adjoint operator T' : W' — V' is defined by

(T'N)(€) = NT€), €€V, AeW'. (2.113)
Example 2.52. Let V = W = [! and T the shift operator defined for £ = (x1, 2, ) by
Té- = (07x1,x2,x3,-~-) (2114)

We have (1) = 1> with n(§) = Y22, TkYk. SO

(T')(€) = (T = > yeak—1 = Y Y1k, 2.115)
k=1 k=1
hence we have
T'n = (y2,y3, ) (2.116)

It is easy to check that |T|| = | T'| = 1.
Theorem 2.53. The adjoint operator T' is linear bounded and we have
Il = 11Tl - 2.117)
Proof. The fact T" is linear is easy and left to the reader. We have
ITMON = INTOI < IAMITEN < AT (2.118)

and this implies that | T’ A|| < [|A|||| || and so [|T7] < ||T|-
To prove that ||T”|| > ||T'|| we use that, by Corollary [2.40] for any { € V there exists A\¢ € W’ such that

el =1 Ae(T€) = [|T¢] (2.119)
‘We have then
1T = [A(TEl
(T 2) (]

17" AelH€]I

177 [HIAe 1<)
Il (2.120)

IN A
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and therefore ||T']| < ||77]]- N

Remark 2.54. It is straightforward to see that the map T' — T” satisfies
. (T+S)=T+5
2. (aT) =T’
3. (ST =T"9

In the case where V' = H is a Hilbert space, then there is, by Riesz representation theorem, a natural
antilinear isometry

J: H —H
A=A (2.121)
where A
M) = (&N, £eH (2.122)

(Recall (-, -)) is the scalar product in H linear in the first argument, anti-linear in the second argument.)
Definition 2.55. The (Hilbert space) adjoint operator T* : H — H for T € L(H) is defined by

T = Jr'Jt. (2.123)
Then we have for any £, € H

(T€n) = (R™'n)(T€) = (I"R™'n)(€) = (&,RT'R™'n) = (£,T"n). (2.124)

Note that the map 7" — T is antilinear, i.e. ¢cI* = ¢I"* for ¢ € C. By slight abuse of notation 7 is
called the adjoint operator to 7.

Theorem 2.56. Let H be a Hilbert space and T, S € L(H). Then we have
1. T — T* is an anti linear isometry of L(H) onto itself.
2 (T =T
3. (TS)* =8*T*
4. IfT-' € L(H) then T*—1 € L(H) and (T*)~ = (T~1)*.
51T = |72

Proof. 1. follows from Riesz representation theorem. 2. follows from the reflexivity of H and H = H'. 3.
and 4. are left to the reader. For 5. note that | 7*T'|| < ||T*||||T|| = ||T||?. Conversely using theorem [2.42]
we have

. . (T Tem)| _ |(TTE6)|  |(Te,TE)|  [Te|?
T*T T*T¢|| = s - _
17Tl 2 1777l = sup Z=em— 2 g el Tel

and hence | T||? < |T*T|. N

(2.125)
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2.7 Baire theorem and uniform boundedness theorem

The uniform boundedness theorem is quite useful in applications and as the open mapping theorem and
closed graph theorem of next section it derives from a common source: the so-called Baire category theorem.
Here, as opposed to the Hahn-Banach theorem the completeness of the space plays a crucial role.

Definition 2.57. A subset M of a metric space X is said to be
1. nowhere dense in X if its closure M has no interior points.
2. of the first category in X if M is the union of countable many sets each of which is nowhere dense.
3. of the second category in X if M is not of the first category.

Theorem 2.58. (Baire category theorem) A complete non-empty metric space X is of the second category
in itself. In particular if X # () is complete and

X = |J A, Ajclosed (2.126)
k=1

then at least one Ay, contains a nonempty open subset.

Proof. Let us assume that X is of the first category and so

X = U M, , (2.127)
k=1

with each M} nowhere dense. We will construct a Cauchy sequence & whose limit belongs to no My,
therefore contradicting the representation[2.127,

By assumption M is nowhere dense so that M; does not contain a nonempty open set. But X does (e.g.
X itself). This implies that M; # X and thus M =X \ M is open and non-empty. So we pick &1 € M,°
and an open ball around it

—c 1
By = B, (&) C M, € < 3 (2.128)

By assumption M5 is nowhere dense in X so tha@ does not contain a nonempty open set. Hence it does
not contain the open ball B, /5(&1). Therefore My N Be, /2(&1) is nonempty and open so that we may
choose an open ball in this set , say,

—FcC € 1
By = B, (&) C M N B, j5(61) e < 51 <3 (2.129)
By induction we find a sequence of balls
1
By = Bek (fk) € < 27k (2.130)

such that B, N M, = () and
By C Bek/z(fk) C Byg. (2.131)
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Since ¢, < 2% the sequence &, is Cauchy and limy_, o & = ¢ € X. Furthermore for every n and m > n
we have B, C B, /5(£,) so that

A(6ns€) < d(Ensm) + A(Ems€) < B + d(Ems€) — - 2.132)

as m — oo. Hence for every n, £ € By C Mnc and so £ ¢ Up M), = X. This is a contradiction. W

An important immediate consequence of Baire’s theorem is the uniform boundedness theorem (Banach-
Steinhaus theorem). It is quite remarkable since it shows that if a sequence 7, is point wise bounded, it is is
bounded in norm!.

Theorem 2.59. (Uniform boundedness theorem) Let {T},} be a sequence of bounded linear operators
T, € L(V,W) from a Banach space V into a normed vector space W. Assume that for ever £ € V there
exists a constant c¢ such that

sup [ Tn& < ce. (2.133)
Then there exists a ¢ such that
sup | T,[| < ¢ (2.134)
Proof. Let us define
Ap = {€ @ sup || T€ <k}, (2.135)

and it is easy to see that Ay, is a closed set and we have V' = « Ak. Since V' is complete, by Baire theorem
some Ay, contains an open ball, say,

By = Br(fo) C Ak0~ (2.136)
For an arbitrary £ # 0 let n € By be given by

r§
N =g+t (2.137)
2 €l
and since ) € Ay, we have sup,, ||T,n|| < ko. We have
2
£ = ”f” (n—¢&o) (2.138)
and for any n
2§ 2||€ 4k
izl = 2y, < 2 )+ o < 20 2.139)
and hence
4k
sup | T,/ < —. (2.140)
n T

This concludes the proof. W
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Example 2.60. Bilinear functionals Let IV and W be Banach spaces. Consider a bilinear functional

B:VxW—=C (2.141)
which is continuous in each variable. That is for fixed £ € V

B,):W—=C (2.142)
is linear and continuous and for fixed ninW

B(,n):V=>C (2.143)

is linear and continuous. We claim that continuity in each variable implies continuity, i.e., if (§,,7,) —
(0,0) then B(&,,,n,) — O.

Proof. Define T,, : W — C by

T.n = B(&,,n) . (2.144)
For any n, by the continuity in the second variable we have that 7T}, is a bounded operator. For any ninWW by
continuity in the first variable we have lim,, || T,,7|| = 0 and hence sup,, ||T,,1|| < ¢, < co. By the uniform

boundedness theorem there exists a ¢ > 0 such that

sup [T || < ¢ (2.145)
or

as n — oo. Hence we have continuity. W

Note further that continuity of B is equivalent to

1B(&m < cl&llnll (2.147)

for all ¢, 7. And this proved exactly as for linear maps.

We apply this to symmetric operators in Hilbert spaces and we show that unbounded symmetric operators
are necessarily defined only on a subspace of H but not on all of H.

Theorem 2.61. (Hellinger-Toeplitz) Let H be a Hilbert space and let'T' : H — H be a linear operator
defined on all H and we have (T¢,n) = (£,Tn) forall §,m € H. Then T is bounded.

Corollary 2.62. Let H be a Hilbert space and let'T’ : Dy — H be a linear operator defined on all Dy C H
and we have (T¢,n) = (&,Tn) forall§,n € Dy. Then Dy # H

Proof. The bilinear map
B(&mn) = (T€n) (2.148)

is continuous in 7 and since
B(&n) = (& Tn) (2.149)

it is also continuous in £. By the previous example B is continuous in both variables jointly and thus there
exists ¢ > 0 such that

(T, m| < cliglllnll (2.150)
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for all &, € H. In particular if n = T¢ we have

IT¢|* = (T€, T€) = (T€,n) < cllélnll = cl€llTe] - (2.151)

Hence we have ||T']| <c. N

Example 2.63. (Convergence of Fourier series) Consider a function f periodic of period 27. Its Fourier
coefficients are

I ,
e =5= | [f)eT™dt, neZ (2.152)
2m Jo
and the Fourier partial sums are
SN(HE) = D cne™ (2.153)

k|<N

As one learn in an analysis class we have pointwise (or even uniform) convergence of Sy (f)(x)tof(x) if
the function f is sufficiently smooth (say f is C''). At discontinuity points f may or may not converge but
interestingly enough even at points where f is continuous Sy (f) need not converge. One can construct
explicit examples but we prove this here using the uniform boundedness theorem. First we recall that, using
trigonometric formulas one can write

! WDN(t—s)f(s)ds with Dy (t) = W

Sn(f)(t) (2.154)

:EO

We apply the uniform boundedness theorem by consider the Banach space X of continuous periodic of
period 27 with || f|| = sup, |f(t)| and let us define the linear functional

An(f) = Su(f)(0) (2.155)
One checks that

2T
M0 < Sl [ DN lds 2.156)

By using the same argument as for computing the norm of the Fredholm integral operator we obtain

1 2
Al = — D, d 2.157
hall = 5= [ IDa)lds @.157)
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Now we use the inequality | sin(¢)| < ¢ on [0, 7] and obtain

12" |sin((n+ 3)t)

sin(3¢)
1 (% |sin((n + 3)0)|
%/0 t

1 2n+1)7 |o:
_ 7/ |sin ] gt
0

™ (%

Al =

L ‘ d
2 0

dt

2n

- I /(M)Tr ol g
k

™ v
k=0"F~T

1?: : /(kﬂ)wl' | dt
- &+ D7 sin v

k=0 fem

2n
2 1
- 2y N 2.1
w2 = (k+1) 0 (2.158)

Y

as n — oco. Hence the sequence ||\, || is unbounded. By the uniform boundedness theorem this implies that
sup s | A, (f)| cannot be bounded and hence there exists at least one f such that A, (f) = 5, (f)(0) diverges.
That is the Fourier series diverges att = 0. W

2.8 Open mapping and closed graph theorems

After the Hahn-Banach theorem and the uniform boundedness theorem we now attack the third ’big” the-
orem of functional analysis, the open mapping theorem. It is well-known that the continuity of a map
f: X — Y between metric spaces is equivalent to the property that for any open set O C Y, the set f~1(0)
is also open. By contrast let us define

Definition 2.64. Let M and N be metric spaces. The ' : Dr — N with domain Dy is called an open
mapping if for every open set O € Dy the image F'(O) is an open setin Y.

Remark 2.65. In general continuous mapping are not open, e.g. f(¢) = sin(¢) maps the open set (0, 27)
onto the closed set [—1, 1].

‘We have the remarkable result

Theorem 2.66. (Open mapping theorem) Let V' and W be Banach spaces. A surjective bounded linear
operatorT" : V. — W is an open mapping.

An immediate consequence of this theorem is

Theorem 2.67. Inverse mapping theorem LetLet V and W be Banach spaces and let T : V. — W be a
bounded linear bijective map. Then T~ is continuous and thus bounded.

The proof of theorem 2.66|relies on
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Proposition 2.68. A bounded linear operator T' : V. — W from a Banach space V onto a Banch space
W has the property that the image of T'(By) of the open unit ball By = B1(0) C V contains an open ball
around 0 € W

Proof. The proof consists of three steps:

1. The closure of the open ball B; = B /5(0) contains an open ball B*.

2. If B, = By--(0) then the closure T'(B,,) contains an open ball V;, around 0 € Y.

3. T'(By) contains an open ball around 0.

Step 1.: Let By = By /5(0). Then we have

vV = U kB . (2.159)
k=1
Since 7' is surjective and linear,
W =1TWV)=T(|JkB) = |JrI(B) = |J*T(B1), (2.160)

where the last equality follows from the fact that the union is Y, hence we did not add any points by taking
the closure. By Baire category theorem there exist some & such that ¥7'(B;) contains an open ball and hence
T'(B1) contains an open ball, say B* = B.(ng) C T'(Bj). Then we also have

B* 1o = Be(0) € T(B1) — 10 (2.161)

Step 2.: We prove that B* — g C T'(By) where By = B;(0) by proving that (see (2.161)) that

T(B1) — 1o C T(By) . (2.162)

Letn € T(By) — no. Thenn + ny € T(B;) and we remember that also 1y € T(B;). Then there exists
an =TB, € T(By) and §,, = Ty, € T(By) such that

lima, =n+mny,, limd, = ng. (2.163)
Since B, yn € B of radius 1/2 we have ||3,, — v|| < 1 and 3,, — v, € By. From

n—oo

we conclude that 7 € T'(By). This concludes the proof of (2.162) and thus

B* — o = B.(0) C T(Bo) (2.165)

By the linearity of T" if B,, = By-»(0), we have T'(B,,) = 2~"T(By) and thus

Vi = B.j3n(0) C T(B,) (2.166)
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Step 3: Finally we prove that
Vi = B/2(0) C T(By) . (2.167)
Letn € V1. By (2.160) with n = 1, for any € > 0 there exist £&; € B; such that
[n—T&| <e/4. (2.168)

Then n — T¢; € V5 and by (2.166) with n = 2 we see that n — T¢; € Vo C T(Bs). Repeating the same
argument we find &5 € B such that

| —T& — Tl < ¢€/8 (2.169)

and hence n — T&; — T¢s € V5 C T(Bs), an so on. In the nth step we select &, inB,, such that
- €
I =D _T&ll < 5g (2.170)
k=1

Let us set ¢, = & + - -+ &, then since ||&|| < 27% ¢, is Cauchy sequence and ¢, — & € V. Also £ € By
since By has radius 1. Since T is continuous 7'(;, — T'z and by (2.170) we have T¢ = nand son € T(By).
[ |

Proof of theorem [2.66] This follows from the previous proposition by using linearity to translate and dilate
balls. W

The next theorem is also an immediate consequence of the open mapping theorem. Suppose T : D(T') —
W where D(T') is a subspace of V and is called the domain of T, and V, W are Banach spaces. We do not
assume that 7" is bounded and in general D(T") # V.

Definition 2.69. The graph of T is the set
D(T) = {[¢&,n] €V x W; €€ Dp,n=TE} 2.171)

Note that I'(T") is a subspace of V' x W which we can make it into a normed vector space with the norm

1€ nlll = NIl + limll (2.172)

Definition 2.70. A map 7' : D(T) — W (V,W Banach spaces) is closed if the graph I'(T") is closed.
Equivalently T is closed if for any sequence {&, } such that

& — & and TE, — eta (2.173)

then
Tx =n (2.174)

Clearly bounded operators are closed, but the converse is not true.

Theorem 2.71. (Closed graph theorem) Let V' and W be Banach spaces and T : D(T) — W a linear
operator. If D(T) is closed and if T' is closed then T is bounded.
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Corollary 2.72. Let V and W be Banach spaces and T : V. — W a linear operator. Then T is closed if
and only if T is bounded.

Proof. If D(T) and T'(T") are closed then they are Banach spaces and we define the map P T'(T") — D(T)
by
P& Te)) = ¢ (2.175)

i.e., P is the projection on the first component. The map P is a bijection and by the inverse mapping theorem
P~ is bounded. This means

1Pl < clléllor [Ig] + IT€l < Cliel (2.176)

. Thus we have || T¢|| < (C' — 1)||z¢|| and so T is bounded. W

As an application we prove

Theorem 2.73. Suppose than V' is a Banach space with respect to the two norms ||£||1 and ||xi||2 which
are compatible in the sense that if a sequence {&,,} converges in both norms then the two limits are equal.
Then the two norms are equivalent in the sense that there exists constants cand C such that ¢||€||1 < ||€]|2 <

Cllgl-

Proof. Consider the identity map 1 : (V|| - ||1) = (V, || - ||2) given by 1(§) = £. Compatibility means that
the map 1 is closed. By the closed graph theorem it is bounded in both directions. W

We conclude with an example of a closed operator which is not bounded

Example 2.74. Let V = ([0, 1] with the sup-norm and let T f(t) = f’(¢) be the differentiation operator
with domain D(T') = C[0,1] of continuously differentiable functions. The operator is unbounded (take
fn = t™) and closed since if f,, converges uniformly to f and f/ converge uniformly to & then we have
using uniform convergence to interchange integral and limit

t t ¢
/ h(s)ds = / lim f/ (s)ds = / lim f/(s)ds = f(t) — £(0), (2.177)
0 n n

0 0

thatis f'(t) = h. W

2.9 Exercises

Exercise 4. Prove that [P is a Banach space.

Exercise 5. Consider the normed vector space BV [a,b] with || f||gv = f(a) + V(f) where V(f) is the
variation of f on [a, b] and let || f]lcc = sup; |f(¥)

1. Show that the norm || f ||~ is weaker than || || v .
2. Show that BV [a, b] with || - || gy is a Banach space. (You may use part 1.)

Exercise 6. Prove Theorem
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Exercise 7. Compute the spectral radius of the Volterra integral K operator given in Eq. (1.35)) of Exercise
2

Exercise 8. Let m denote Lebesgue measure. Show that the integral operator T'f = f; k(t,s)f(s)ds
defined a bounded operator on L?([a, b], m) provided k € L?([a,b] x [a,b], m x m).

Exercise 9. Let V' be a Banach space.

1. Show thatif T € £(V') then e defined by
X = §OO Lx (2.178)
N P kT '
—1

defines a linear operator in £(V').
2. Show that eX1tY = ¢XeY whenever X and Y commute, i.e. XY = Y X.
3. Show that e is invertible and (eX)~! = =X,

4. Show that the (non-linear) map X > e is differentiable and compute the derivative (eX)’. Show
that
(eX) #eX. (2.179)

Exercise 10. Show that [? 1 < p < oo is separable but that [*° is not separable.

Exercise 11. To show that (I°°)" # [! consider the subspace c and define a function ) on ¢ by

A(§) = lim &, . (2.180)

n—oo

Show that A extends to functional on [°° and deduce from this that ({°°)’ # [*.

Exercise 12. Let V and W be normed vector spaces and 7' € L(V, W). If T~ exists and is bounded show
that (T—1)" = (T")~%.

Exercise 13. To illustrate the Hahn-Banach theorem and its consequences:

1. For Corollary[2.39] consider the functional A on the euclidean plane R2 givenby A\(§) = aiz1+asxo,
its linear extensions A to R? and the corresponding norms \.

2. For Corollary[2.40] let V = R?, find the functional \.
Exercise 14. Let VV, W be normed vector spaces and {7}, } a sequence of bounded operators.
1. Suppose V is a Banach space. Show that if {7}, } converges strongly to T then T' is a bounded operator.

2. If V is not complete then 7" need not to be bounded. To see this let £ C [*° be the subspace of
sequence which contains only a finite number of nonzero terms and define A by

T(J)l,l‘g,'-'):($1,21‘2,3$3,'“) (2181)

Show that A is not bounded but can be written as the strong limit of a sequence bounded operators.
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Exercise 15. Let V, W be Banach spaces and {T,,} a sequence of bounded operators. Show that the
sequence {7}, } converges strongly to a bounded operator T if

1. The sequence {||T},||} is bounded.

2. The sequence {||T,,£||} converges for £ in a dense setin V.

Hint: Use the first part of previous exercise.

Exercise 16. 1. Show by an example that in Baire’s category theorem the completeness condition cannot
be omitted.

2. Show by an example that in Baire’s category theorem condition of the countability of the decomposi-

tion (see Eq. (2.126))) cannot be omitted.
Hint: Do not look for complicated metric spaces.

Exercise 17. (Weak convergence) Let V' be a normed vector space. We say that a sequence {&,, } converges
weakly to & if
lim A(&,) = M) (2.182)

for all A € V'. Show the following properties of weak convergence
1. The weak limit of {&,}, if it exists, is unique.
2. If &, converges weakly to £ then ||&,, || is bounded. Hint: Use the uniform boundedness theorem.

3. If &, converges to & then £, converges to £ weakly but the converse is not necessarily true. Hint: Try
a separable Hilbert space or [P....

4. Show that in finite dimensional spaces weak convergence and strong convergence are equivalent.

5. Show that if {£,,} is a sequence such that (i) sup,, ||&,|| < ¢ < oo and (ii) lim, A(&,) = A(§) for a
dense set of A in V' then &, converges weakly to &.

6. Show that if V' = [P, p > 1, then &, converges weakly to £ if and only if the sequence {||&,||} is

bounded and lim,, z\"”) = x, for all k. (Here we have denoted &, = (2}, z{",--- ...))

7. Show that in I weak convergence and strong convergence are equivalent.

Exercise 18. In this problem we call a map an open mapping if for any open set O C V the image T'(O) is
an open set of T'(V).

1. Suppose N is a closed subspace of a Banach space V' and consider the quotient space quotient V/N.
Show that V/N can be made into a Banach space with the norm

€]l = int ||| (2.183)
nes

2. Show that if V' is a Banach space then any A\ € V'’ is an open mapping. Show also thatif T : V — W
has finite-dimensional range then 7" is an open mapping. Hint: Use part 1.

3. Find an example of a bounded linear map which is not an open mapping.
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Exercise 19. Let VV and W be Banach spaces and T : V' — W a bounded linear maps such that the range
of T, R(T) is finite-codimensional subspace of TV. Show that R(T') is closed.
Hint: Use the closed graph theorem. Extend 7" to V' & Z such that the range of 7" is all of W.

Exercise 20. Suppose V is a Banach space, Y and Z closed complementary subspaces of V' such that
V =Y & Z. Let Py be the projection on Y along Z and Py be the projection on Z along Y. Show that Py
and Pz are continuous.

Hint: Use the closed graph theorem
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Chapter 3

Spectral theory

3.1 Spectrum and resolvent

Let us first recall the spectral theory in finite-dimensional space (linear algebra). For T € L(C™), A € C
is called an eigenvalue of T if T — u1 is singular, i.e., if det(T" — p1) = 0. The set of eigenvalues of T is
called the spectrum of T. Since det(T' — p1) is a polynomial of order n then the spectrum of 7' contains
at least one point and at most n points. If y is an eigenvalue, then the eigenvalue equation T, = ué has
at least one non-trivial solution. Such solutions are called eigenvectors for the eigenvalue . If p is not an
eigenvalue then 7' — y1 is regular and so (T — p1) ! exists.

In infinite dimensional vector spaces is the spectral analysis hugely more complicated, but also much
more interesting than in finite-dimensional spaces. From a practical point of view understanding the spec-
trum of an operator is essential part of understanding the operator itself!

Convention/notation: V is a complex vector space and T' € L(V). For u € C we set

T, =T—pul 3.1)

Definition 3.1. Let T € L(V)
1. pis a regular value of T'if T}, is bijective. (Hence T’ L€ £(V) by the inverse mapping theorem).

2. The resolvent set of T, denoted by p(T) is the set of regular values of T,

p(T) = {u € C : pregular value of T} , (3.2)
and the resolvent of T' is
R.(T) = (T —p1)~* (3.3)
3. The spectrum of T' is
o(T) = C\p(T), (3.4

and A € o(T) is called a spectral value.

41
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4. p € o(T) is called an eigenvalue of T if the equation

T¢ = pg (-5

has a non-trivial solution £ € V. Such a solution ¢ is called an eigenvector for the eigenvalue p and
the subspace

E.(T) = {&;T¢ = pé} (3.6)

is called the eigenspace of T for the eigenvalue p. The point spectrum of T is

op(T) = {p; p eigenvalue of T'} 3.7

5. The continuous spectrum of T is

0.(T) ={nea()\op,(T); D, =T,(V)isdensein V and T;l exists, but is unbounded}

(3.8)
6. The residual spectrum of T' is
0.(T) ={neo(l)\op(T); D, =T,(V) is not dense in V'} (3.9)
We clearly have
Lemma 3.2. The sets 0,(T), 0.(T), and o,.(T) are mutually disjoint and
C=pMUoc(T) = p(T)Uo,(T)Uo(T)Uo,.(T) (3.10)
It is not immediately obvious that o,.(T) is not empty.
Example 3.3. Let T be the right shift operator on [2, i.e for & = (1,2, --) we have
T¢ = (0,21, 29, ). (.11)

Then 0 is a spectral value since T'(I?) = {&; x1 = 0} is not dense in [2. On T'(I?) the inverse if the left
shit S¢ = (£2,&3,--+). On the other hand 0 is not en egenvalue since the equation 7€ = 0 only the trivial
solution{ = 0. So 0 € 0,-(T). N

Example 3.4. Let T be the multiplication operator on L2[0, 1] given by
Tf(t) = tf(t). (3.12)

We have ||Tf||> = [t2|f(t)]*dt < ||f||* showing that ||| < 1. it is left to the reader to prove that
[IT|| = 1. note that

o If 1 ¢ [0,1] then p € p(T). Indeed we have

Ruf(t) = 7= 1(0) (.13)

and || R,|| < dist(y1,[0, 1))
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e If 1 € [0,1], pis not eigenvalue since ¢ f (¢t) = pf(¢) has only the solution f(¢) = 0 a.e.

e If u € [0,1], then T},(L?[0,1]) is dense since it contains all L? functions which vanish in some
neighborhood of ty = p. Then T, ! f(t) = (t — p)~' f(t) is defined on a dense set but unbounded.

Thus we have
o(T) = o0(T) =[0,1], 0p(T) =0,(T) =0 (3.14)

The map

R(T) : p(T) — L(V)
po— Ry(T)

is an operator-valued function on the resolvent set p(7"). We first investigate in this function can be under-
stood as an “analytic” function in some way. Since £(V') is a Banach space we need to develop a bit the
theory of analytic Banach-spaced valued functions.

Definition 3.5. Let 2 C C be an open set, V a Banach space and
() Q—V (3.15)
a map with valued in the Banach space V.

1. The map &(z) is called strongly differentiable at zy € ) if

.1
€' (20) = lim — (£(20 + 1) — &(20)) (3.16)
h—0 h
exists. The map &£(z) is called strongly analytic in Q if it is strongly differentiable at any z € €.

2. The map £(z) is called weakly differentiable at z, € € if for any linear functional A\ € V' the complex
valued function

z = A(2)) (3.17)

is differentiable at zo. The map £(z) is called weakly analytic in € if it is weakly differentiable at any
z € Q.
We have

Theorem 3.6. A Banach-space valued map £(z) is strongly analytic if and only if it is weakly analytic.
As a warm-up we have

Lemma 3.7. Let {£,,} be a sequence in the Banach space V. Then the sequence {£,,} is Cauchy if and only
if the sequence {\(&,)} is Cauchy, uniformly for all X\ € V', || \|| < 1.
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Proof. On one hand we have ||[A(&,) — A&n) || < [IAEn — Emll = ||€n — &m || for ||A]] < 1. On the other
hand we have [|§;, — &nl| = supjy =1 [M&n) — A(§m)| by Theorem[2.42L W

Proof of Theorem Clearly strongly analytic implies weakly analytic. So let us assume that £ is weakly
analytic in Q C C, let 2o € Q and I a circle around zq contained in 2. For any A € V'’ we have by Cauchy
Theorem

(et M=) ey = o [ [2 (= ) - o M.

T 2mi r z—(204+h) z—2 (z — 20)
(3.18)
Since A(£(z)) is continuous on I there exists a constant c) such that
sup |A(£(2))] < en (3.19)
z inl’
So the family of
&z); V' — C
A — AE(2) (3.20)

for z € I is a point wise bounded family of linear maps (use the isomorphism V' — V). From the uniform
boundedness theorem there exists a ¢ < oo such that

sup [[€(2)| = ¢ (321)
So we can bound (3.18) by

1 1 1 1 1
. < — — — — dlz < .
| 3.18 | ) cH)\H /F ‘ {h (z (Zo h) 2 Zo) (z 20)2} ‘ |z Const|h||\)\|| (3.22)

Therefore 4 A(£(zo + h) — &(20)) converges uniformly in A for all A with ||A|| < 1. By the previous lemma
this implies that +(£(zo + h) — &(20)) is Cauchy for [k| — 0. This concludes the proof. W

The theorem just proved is very useful since it allows us to speak simply of analytic Banach-space valued
functions. All the theorem from analytic function theory can be used since they apply to the ordinary analytic
function A(£(z)) and so we can "lift” these results to the strongly analytic function &(z).

Theorem 3.8. Let V be a Banach space and T € L(V).
1. p(T) is an open set in C.
2. The resolvent v — R,,(T) is analytic in p(T).

Proof. We use the Neumann series (see Theorem [2.23). if o € p(T") consider the open ball

Q = {u: = pol < 1Rl '} - (3.23)
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We have
poo= Ty, — (M — po)1
= Tu[1 = (1 — po)Ry,) - (3.24)
Since ||(p — p10) Ry, || < 1 we can invert T}, and using Neumann series we obtain
Ry = [1— (= po)Ryg] ™ Ruy = D> (1 — o) RS (3.25)
k=0

This is a convergent series in £(1') and so R, exist for 1 € Qg and so Qy C p(T"). The power series also
shows that R is is analytic. W

Theorem 3.9. Let V be a Banach space and T € L(V'). Then the spectrum o(T) is closed and non-empty.

Proof. As the complement of p(T"), the spectrum o (7") is closed. By contradiction let us assume that o (7T')
is empty. Then p(T') = C and R, is an entire function. For |p| > ||T|| we have the convergent series

Ry(T) = (T—pl)™ = —p7' A —p7' 7)™ = —p= 1) (u'T)* (3.26)
k=0
and
o0 -1
- 1k o
R,(T)|| < |p|™* p T = ——— (3.27)

and thus ||R,(T)| — 0 as |u| — oo. Hence R,(T) is is a bounded entire function and by Liouville
Theorem it as to be constant and identically null. But this is impossible and so o(7') is not empty. W

Eq. (3.26) also shows that

Corollary 3.10. We have
o(T) C{p : |pl < IT} (3.28)

This can be strengthened into the following theorem which justifies the terminology spectral radius for
r(T).

Theorem 3.11. Let V be a Banach space and T € L(V'). Then we have

r(T) = sup |p| = max |y (3.29)
peo(T) pneo(T)

Proof. The series is nothing but the Laurent series for R,, (expansion in power of 1/ around co).
From complex analysis we know for a power series f(z) = >, - a,2" with convergence radius r converges
absolutely for |z| < 7 but is not analytic in {|z| < (r + €)}. For the power series this means that the
series converges exactly outside the circle of radius sup, ¢, lv].

We also know that the convergence radius of a power series is given by the formula

r~! = limsup \an\l/", (3.30)

n— 00
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that is in our case
r~! = limsup |77 = lim |T"|Y" = r(T) (3.31)
n—oo

n— oo

Finally note that since the spectra is closed we can replace the sup by a max. W

Note that £(V) in addition of being a Banach space is also an algebra with the property that ||T'S|| <
[IT1|S||. So we can certainly define polynomial of an element of L(V)

N
p(T) =Y aT* (3.32)
k=1
or more generally for entire function f(z) = ), a,z™ we can define
FT) = a,T" (3.33)
k=1

Note also that the formula (3.33) makes sense if f has a convergence radius larger than the spectral radius
r(T).
In order to be more general we do not use a power series but instead use Cauchy integral formula.

Definition 3.12. Let T € L(V), f(z) a function analytic in a domain 2 containing o (T"). Let C be a contour
in Q N p(T') such that C' winds once around any point in o/(7") and winds zero time around any point in Q€.

Set
1

27 Jo

1

2=T) ' f(2)dz = ——
(=T s = 5 |

f(T)

Note that the definition does not depend on the choice of C'.

R.(T)f(z)dz. (3.34)

As a preparation for the next theorem we prove

Lemma 3.13. (Resolvent formula)

R,(TR,(T) = 3.35
W(T) R (T) — (3.39)
Proof. We have
(T—pl)—(T—-v1) = (v—p)1 (3.36)
and so multiplying by R, R, we have
R, - R, = (v—u)R,R, . (3.37)

The next theorem provides the basis for the functional calculus.

Theorem 3.14. (Functional calculus and spectral mapping theorem) Let T' € L(V).

1. If f is a polynomial or analytic in a disk of radius greater than o(T) then the definition coin-
cides with the formulas and .
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2. The map from the algebra of analytic functions on an open set containing o(T) into L(V') is a

homomorphism.
3.
o(f(T)) = f(o(T)) (3.38)
4. If f is analytic in an open set containing o(T) and g is analytic in an open set containing f(o(T)). If
h=go fthen
hT) = f(g(T)) (3.39)
Proof. 1. Using the representation R, (T') = — Y ;- pu~*=1T* we obtain by Cauchy integral formula
1
" = —— [ (T —21)"'2"dz (3.40)
2mi Jo

and this shows that the formulas coincide.

For 2. we note that the mapping f — f(T) is obviously linear. To show it is multiplicative we use the
resolvent formula of Lemma If f and g are analytic in a domain containing (T") we pick two contours
C and D as in definition [3.12] with D lying inside C. Then we have

(2717) | [ rRu@) gzt
(ir) [ = gz
B (21m>2/c UD<Z—w)1g(w)dw] R.(T)f(2)dz

- (;T) /D [ /C <zw>1f<z>dz} R (T)g(w)duw (3.41)

Since D lies inside C' we have [, (z — w)~'g(w)dw = 0 while [(z —w)~" f(z) = 2nif(w) and thus

f(T)g(T)

H(T)g(T) = — /D R (T) f (1)g(w)dw. (3.42)

and thus f(T)g(T) = h(T).
For 3. we have to show that 1 belongs to the spectrum of f(7') if and only if g is of the form

w=f), veo(T). (3.43)
If 2 is not of the form (3.43), then f(z) — p does not vanish on (7). Therefore g(2) = (f(z) — p)~Lis
analytic in an open set containing o (7). According to part 2. (f(T) — pl)g(T) = h(T) = 1. So g(T) is

the inverse of (f(T') — u) and so p ¢ o(f(T)).
Conversely suppose that i is of the form (3.43). Define k(z) by

(3.44)
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The function k(z) is analytic in an open set containing o(T") so k(T') can be defined using by (3.34). Since
(z —v)k(z) = f(2) — f(v) by part 2. we have

(T —vD)K(T) = f(T)— f(v)1. (3.45)

Since v € o(T) the first factor is not invertible and so f(7") — f(v) is not invertible either.
For 4. by assumption g(w) is analytic on f(o(T")). Since by 3. the spectrum of f(T) is f(o(T")) we can

apply (3.34) to g in place of f and f(7') in place of T":
1 _
9(f(T)) = 5= | (wl—f(T))" g(w)dw (3.46)
™ Jp
If w € D then w — f(2) is an analytic function on o(T"), then applying (3.34) again
1
(w—fT)" = o= [ G1-T)" (w—f(2))"dz (3.47)
211 C

provided C' does not wind around any point of D. Combining the tow formulas we find

o) = (35) [ [ @ s otwasds. 649

We interchange the order to the integral and since D winds around every point z € C we have by Cauchy

integral formula
L = £ gw)dw = g(f(2)) = hz). (3.49)

Setting this back in (3.48) we find that g(f(T)) = h(T). B

Suppose o(T") can be decomposed into N pairwise disjoint closed components:
o(T) =o1U---Uon, o;No=10 (3.50)

Since the o; are closed they are at positive distance from each other and we can pick contours C; that winds
once around each point of ¢; but not o, k # j. We set

1
P=— 1-7)! 51
¢ 57 Cj(z )" dz (3.51)

Theorem 3.15. The P; are disjoint projections, i.e.

P}=P; andP;P,=0 forj+#k (3.52)

and we have

Z P =1. (3.53)
J

Proof. Pick open set §2; such that €2; contains ¢; and the §2; are pairwise disjoint. Set {2 = Ujvzl ;. Then
consider the function f;(z) which is equal to 1 in £2; and 0 in © \ €;. These functions are analytic in 2 and
satisfy f;(z)® = fi(z) as well as f; f; = 0 for i # j. By functional calculus we obtain the theorem. W



3.1. SPECTRUM AND RESOLVENT 49

Theorem 3.16. Let V be a Banch space and T € LV and let T" € L(V") it adjoint. Then

o(T)=o(T") (3.54)
Corollary 3.17. If T is a bounded operator on a Hilbert space and T™ its (Hilbert-)adjoint. Then

o(T*) = o(T) (3.55)

We need the following lemma. For a bounded linear operator 7' we denote N (T") the nullspace of T and
R(T) the range of T. For a subspace W C V we define the annihilator of W, denoted by W as the set of
linear functional which vanish on W. For a subset W’ of V'’ we define the annihilator of W’ (denoted by
W' 1) as the set of all vectors in V annihilated by all functional in W,

Lemma 3.18. We have
N(T') = R(T)*, N(T)=R(T)* (3.56)

Proof. Use the duality relation A(T'¢) = T'A(€). The details are left as an exercise.
The theorem is an immediate consequence of

Theorem 3.19. T' € L(V) is invertible if and only if T' € L(V") is invertible.
Proof. TF T is invertible with inverse .S then
TS =ST=1y. (3.57)

Taking the adjoint gives
ST =T'S = 1y (3.58)

which shows that S’ is the inverse of T”. If V is a reflexive space then the relation between T and T” is
symmetric so the proof is complete. In case V is not reflexive an additional argument is needed. If T” is
invertible then by taking adjoint

T"S" = S8"T" = 1yn (3.59)

Since T" and Iy~ restricted to V' are equal to T" and Iy respectively it follows that the nullspace of T is
trivial and so 7" is one- to-one. So S” restricted to the range of T is inverse to T'. Suppose now that the range
of T is not all of V. Then we can find by Hahn- Banach a non-zero functional A € V/ with A = 0 on the
range of T. According to the previous lemma such a functional belongs to the nullpsace of 7”. Since T” is
invertible this is impossible. W

Example 3.20. We return to the shift 7 : [ — [? given by T¢ = (0,21, s, --) with adjoint S¢ =
(z2, 23, ). We claim that
oT)=0(S) ={z€C:|z| <1} (3.60)

It is easy to check that | L|| = 1 and similarly that || L™|| = 1 for all n and thus r(7") = 1. So no number z
with |z] > 1 belongs to o(S). Next let us try to find eigenvalues for L: (22, x5, cdots) = u(z1, z2, cdots)
which implies

Ty = Mn71x1 (3.61)

We have then > |z,|?> < oo if and only if || < 1. So any y in the open disk {z : [2| < 1} is an
eigenvalue. Since the spectrum is closed then o(S)is the close unit disk. Finally the spectrum of T is the
same as the spectrum of S. The reader should check whether 7" has any eigenvalues.
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Example 3.21. Nilpotent and quasi-nilpotent operators

An operator is called nilpotent if N* = 0 for some k > 1. Then o(N*) = {0 and by the spectral
mapping theorem o (N) = {0}.

The Voltera operator acting on C/a, b]

Kf(t) = /0 K(s,t)f(t) dt (3.62)

with continuous kernel k(t, s) was shown to have spectral radius 7(7') = 0 in the exercises. Therefore
o(K) = {0}. (3.63)
An operator K with o(K) = {0} but N* % 0 for all k is called quasi-nilpotent.

Example 3.22. Fourier transform The Fourier transform 7" is defined by

~

flk) = Tf(k) = /R flx)em ek (3.64)

As we have show in Math 623/624 T is an invertible norm preserving map from L?(R) onto L?(R). The
inverse is given by

flz) = / Fk)e™™* g . (3.65)
R
Consider the mapping R given by
Rf(x) = f(=x), (3.66)
and obviously R? = 1. From (3.65) we have
f(=2) = / F(k)e= 27k g (3.67)
R
So we have T? = R and thus
T =1 (3.68)

By the spectral mapping theorem we immediately obtain that
o(T) C {+1,-1,+4,—i} (3.69)

More details on the spectrum of 7" will be given in the HWK.

3.2 Compact operators: Basic properties

One of the workhorse of analysis in finite-dimensional spaces is the Bolzano-Weierstrass theorem which
asserts that that a set is compact if and only if it is closed and bounded. In infinite dimensional spaces this
theorem fails.

Theorem 3.23. The closed unit ball of a Banach space V' is compact if and only if V' is finite dimensional.
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Before we prove the theorem note that if H is a separable Hilbert space with an orthonormal basis {&,, }
then we have

Hgn _meQ = (gn _fmafn _gm) = HfTLHQ + ||€WH2 = 2. (370)

and so the sequence &, satisfies ||&,|| = 1 for all n and ||&,, — &, = v/2 for n # m. Hence {¢,,} has no
convergent subsequence and so the unit ball is not compact.
In order to adapt this argument to a general Banach space we need the following lemma.

Lemma 3.24. Let V be a Banach space and W a proper closed subspace of V. Then there exists
CeVwith||¢]|=1 and |(—n|>1/2forallneW. (3.71)
Proof. Since W is a proper there exists £ € V with £ ¢ W and since W is closed

inf || —nl|=d>0. 3.72
nlngﬁ ull > (3.72)

We pick g € W such that ||£ — ng|| < 2d and set ' = £ — n9. Then we have
Il < 2d and ||¢" = nll = |8 — (n+no)l| = d forally € W. (3.73)
Finally we set ¢ = ¢’/||¢’|| so that ||¢|| = 1 and
I —n| > 1/2forallny € W. (3.74)

Equipped with this lemma we obtain easily

Proof of Theorem Let {&,,} be the sequence constructed inductively as follows. Pick an arbitrary &;

with ||&1|| = 1. Then if V;, is the subspace spanned &3, - -, &,, it is a closed proper subspace since it is
finite-dimensional and thus by Lemma there exists &,+1 with ||€,41] = 1 and ||§,,41 — & > 1/2 for
[ =1,---,n. The sequence {,} does not have a convergent subsequence. Wl

A bounded operator has the property to maps bounded sets into bounded sets. A operator will be called
compact if it transforms bounded sets into sets whose closure compact. To make this precise we recall

Definition 3.25. Let X be a complete metric space. The set S is called precompact if its closure S is
compact.

e S is precompact if and only if any sequence {£,,} C S contains a Cauchy subsequence.

e S is precompact if and only if for any ¢ > 0 S can be covered by finitely many balls of radius less
than e.

Definition 3.26. Let IV and W be Banach spaces.

1. Alinear map T : V' — W is called compact if the image of the unit ball 7'(B(0)) is precompact.
(This is implies that 7" maps any bounded set into a precompact set.)

2. We denote by C(V, W) the set of all compact operators and set C(V) = C(V, V)
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Let us derive some of the elementary properties of compact operator.

Theorem 3.27. Let U, V, and W be Banach spaces.
1. fT,S € C(V,W)thenT + S € C(V,IW)
2. IfT e C(V,W)and o € K then oT € C(V,W).
3. fTeC(U,V)and S € LIV,W) then ST € C(U,W)
4. IfT € L(U,V)and S € C(V,W) then ST € C(U,W)
5. If{T,,} is a sequence in C(V, W) with |T,, — T|| — 0 then T € C(V,W).

This means that the set of compact operators is a closed subspace of the vector space of bounded opera-
tors and that C(V') is a closed two-sided ideal in the algebra L(V).

Proof. For 1. let {&,} be a sequence in B;(0) then since T is compact there exists a subsequence {,,, }
such that {T¢,, } converges. Since S is compact there exists a subsubsequence {5,%} such that {Sﬁnkj}
and {(T + S)&,, } converges too.

2.isa specialjcase of 3. and 3. itself follows from the fact that a bounded map maps precompact set into
precompact sets. In turn 4. is obvious.

For 5. given € > 0 we pick n such that ||T;, — T'|| < €/2 and since T}, is compact then T, (B;(0)) can be
covered by finitely many balls of radius /2. Then 7 B1(0)) can be covered by finitely many balls of radius
e. B

Definition 3.28. Let V' and W be Banach spaces. A linear operator T' € L(V) is a finite rank operator if its
range R(T') is finite dimensional.

Clearly finite-rank operators are compact. A finite rank operator T € L(V, W) can always be written as
follows. Pick 71, -+ ,my € Wand Ay, --- , Ay € V' and set

N
TE =) N(E)n (3.75)
j=1

In general it is not true that the set of finite rank operators is dense in the set of compact operators even
on separable Banach spaces. It is true in Hilbert spaces as well as in many standard Banach spaces. We
will prove this property for separable Hilbert spaces in the next section. As we will see in examples one can
sometimes prove that an operator is compact by proving that it can be approximated by finite-rank operators.

We conclude this section with a first series of examples of compact operators. In order to prove com-
pactness we will use two classical results of analysis. The first one characterizes compact sets for spaces of
continuous functions.

Theorem 3.29. (Arzela-Ascoli) Let K be a compact metric space and let C(K) the Banach space of
complex-values continuous functions with norm || f|| = sup,cx |f(x)]. Let {fa}acr be a collection of
function such that

1. {fa} is uniformly bounded: there exists ¢ < oo such that sup,, || fo| < c.
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2. {fa} is equicontinuous: given € > 0 there exists 6 > 0 such that

d(z,y) <d = ||fa(z) = faly)|| < eforalla € I (3.76)

Then the family { fo.} is a precompact subset of (C(K).
A related theorem gives a compactness criterion for L2(Q) where @ is a bounded domain.

Theorem 3.30. (Rellich) Let Q be open and bounded with smooth boundary. Let { fo}acr1 be a family of
functions in L*(Q) such that

1. The family { f.} is uniformly bounded: there exists ¢ < oo such that sup,, || fo] < c

2. The derivative of {f.} are uniformly bounded: there exists ¢ < oo such that sup,, |0y, fo| < c for
i=1,2,-- d.

Then the family { fo} is a precompact subsets of L*(Q).

Example 3.31. (Integral operator I) Consider the integral operator

b
Tf(t) = / k(t,s)f(s)ds. 3.77)
If k(t,s) € Cla,b] x [a,b] then we show that T : C[a,b] — C|[a,b] is compact. Let {f,} be a bounded

sequence, e.g. || f»|| < 1 for all n, then we show that the sequence {7 f,,} satisfies the conditions of Arzela-
Ascoli theorem. We have

b
Ti(t) - TE) < / k(t, 5) — K(t', 5)|| ()] ds

IN

b
1l / Ikt 5) — k(t', )| ds (3.78)
e

By the continuity of k(t, s) the right hand side of (3.78)) goes to 0 as ¢t — ¢’ uniformly in n and thus {T'f,, }
is an equicontinuous family. W

Example 3.32. (Integral operator II) Consider an integral operator on some separable Hilbert space

L*(X, p)
71) = [ ht.5)1(s)du. (3.79)
with k(t,s) € L?(X x X, ju x ). It was proved in the exercise that T' is bounded with
1/2
i< ([ [ e sPautin) (3.80)

We show that T" is compact by showing that is it the limit of a sequence of finite-rank operators. Note
that a finite rank integral operators has the form

N
710 = 3 5505) [ 9s(6)1(s)ds 68D
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for some f;, g; € L?. We now expand the k(t, s) (for fixed s) using an o.n.b. {f;} of L? we have

= > HOkG). k() = [ kT du (3.8

By Parseval equality we have

/|k (t, )2 du(t) Z|k (3.83)

//|k (t,s)|*du(s)du(t) /|k (5)[2du(s) (3.84)

and

Let us define

N
= D FiOk;(s) (3.85)
j=1
and define Ty f(t) = [kn(t,s)f(s)du(s). This is a finite rank operator and we have by the same calcula-
tion has for ||T||
17 =Tl < [ [ o (t,5) Pute)dcs / s () Pdp(s) (3.86)

Because of (3.83), the right side of goes to 0 as N — oo. Hence T as the limit of a sequence of
finite-rank operators is compact. W
Example 3.33. (Laplace equation) It is well known that the boundary value problem
Au= fin@Q u = 0ondQ (3.87)
has a unique solution « for every f € C'°°(Q). Let us denote by S the linear map
uw=Sf (3.88)

which gives the solution of (3.87). We claim that S defines a compact map from L?(Q) into L?(Q).
We have

Lemma 3.34. Let f be compactly supported in Q). Then we have
/|f\2da: < C’/Z|fj\2dz with f; = 0,, f . (3.89)
J
Proof. Since f vanishes on the boundary of () we have, at any point x € @
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where x, is a point on the boundary of () with the same x5, - - - , 4 coordinates as z. By Cauchy-Schwartz
we have

fl)? < d/|f1|2dx; (3.91)

and integrating over () gives the result. W

Let us denote || fllo = [|fllz2 and [[f[ls = (f X, |f;]*dx)/2. Then the lemma asserts that || f[lo <
c||f]l1 for smooth. Now multiply (3.87) by u, integrate over ) and integrate by parts:

—/Z|uj|2 dxr = / fudz (3.92)
j Q

Using Cauchy-Schwartz and the lemma this yields

lull¥ < Iflollullo < cllfllollullo- (3.93)

from which we obtain
ully < cllfllo, and ullo <, [ fllo- (3.94)

This shows that the image of the unit ball {||f||o < 1} is mapped by S to solutions v which satisfies the
conditions of Theorem Hence S is a compact map. W

Example 3.35. (Heat equation) Let us consider the heat equation (initial value problem)

ug = Au, u(z,0)=u(x) (3.95)
for function u(x, t), with z € @ a bounded open domain with smooth boundary and ¢ > 0. It is well-known
that the initial value problem where u(z,0) = wu(z) is given has a unique solution for all ¢ > 0. Let us
denote by S the operator mapping the initial condition to the solution at time 7'

St(u) =u(z,T) (3.96)
We have

Theorem 3.36. The map St : L?(Q) — L?(Q) is compact for any T > 0.

Proof. Multiply (3.95) by u and integrate with respect to 2 € @ and ¢ € [0, T]. After integrating by parts

one gets
r 1 1
/ /uutdasdt = / f|u|2(337T)d;v—/ —|ul?*(z,0) dx
0o Jo Q2 Q2

T T
= ulAu = — / / w;|?dedt < 0 (3.97)
L/ )

/|u\2(x,T)dx < / luf2(z, 0) dz (3.98)
Q Q

and thus
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i.e. the L? norm of u is decreasing in ¢ or
1Sl <1.

Next let us multiply (3.95) by tAwu and integrate with respect to x and ¢. We get

T T
/ / tugAudzdt = / / t(Au)? dxdt > 0
0 JQ 0 JQ

Integrating by parts the left side of (3.100) with respect to = and then ¢ we find

T T
/ /tutAudxdt = —/ /tZutjuj dxdt
0 Q 0 Q j
1/T/ d 2
= —— t— Y |u,|° dedt
2)o Jo dtzj: !
1/T/ d ) T )
= = — s dxdt——/ |u;(x, T)|* dx
2 Jo th%: ! 2 Jo

Combining with (3.97) we find

IN

T
r / (2, T) 2 da
2

Q

1/T/ d Z| 2 dudt
Z ol wil? da
2Jo Jodt ="
1 2 1 2
= - | |u(z,0)]*de — = [ |u(z,T)|*dx
2 2
Q Q

1
< / lu(,0)|? da
2 Jq
Combining (3.98) and (3.102) show that

1
1S7ullo < flullo  [ISrully < o llullo

which implies that St is compact by Rellich Theorem. W

3.3 Spectral theory of compact operators

The general result is the following
Theorem 3.37. Let V be a Banach space and T € L(V') a compact operator.
1. Spectrum:

(a) If\#0isino(T) then A € op(T).

(3.99)

(3.100)

(3.101)

(3.102)

(3.103)

(b) 0,(T) is countable and the only possible accumulation point is O which may ar may not belong

to o, (T).
(¢) For A\ # 0, the eigenspace Ey\ = {£ : T, = A&} is finite dimensional.
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(d) The adjoint T' has the same eigenvalues and the eigenspaces have the same dimensions.
2. Fredholm Alternative: For T,, = T' — ul we have either (a) or (b)

(a) T),& = nand Tl’ta = [ have unique solutions & and « for everyn € V, 8 € V'. In particular if
=0 86=0then =0and a = 0.
(b) T, = 0 and Tl:a = 0 have n linearly independent solutions &1, &, (resp. aq, -+ , o) and
Te = nand T'a = 3 have solution if and only if
ar(n)=0,k=1,---,n resp. B(&)=0k=1,---,n (3.104)

We shall not prove this theorem here (see e.g. Lax for a proof) in full generality but we are going to
concentrate on the case of separable Hilbert spaces. We show first that finite rank operators are dense in
separable Hilbert spaces. This remains true for non-separable Hilbert spaces but maybe surprisingly this in
general not true even for separable Hilbert spaces, although this holds for many of the usual Banach spaces.

Theorem 3.38. Let H be a separable Hilbert space and T € C(H). Then there exists a sequence of finite
rank operator {T,,} such that |T,, — T'|| — 0.

Proof. Pick an o.n.b {&;} of H and let us set

n

P& = (5, &), Tu=TP,. (3.105)
k=1
Then we have
HT_Tn” = sup ||(T_Tn)§H

ligl=1

= sup [T(1 - Pl
ligl=1

= sup 1T = A\ (3.106)
li€l=1,Pn&=0

Since P,,+1£ = 0 implies P,& = 0 we have

Ant1 < Ap,, lim A, = X exists. (3.107)

n—oo

We need to show A = 0. For any n let us pick n,, with ||n,|| = 1, P,n, = 0 and | T, || > A, /2. We have
lim(n,, &) = Oforallé € H, (3.108)

and thus
Hm(Tny, , &) = (9, TE) = Oforallé € H, (3.109)
n

Suppose that lim,, |77, || # 0, then for any € > 0 there exists a subsequence 7,,, such that
T, | > e, k=1,2,-- (3.110)
Since T is compact there exists a subsubsequence {nnkj }such that {Tnnkj } is convergent, i.e.

imTn., =n#0 (3.111)
7 J
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But then
B (T, m) = |Inll* # 0 (3.112)

which contradicts (3.109). Therefore we have lim,, [|T7,| # OandsoA=0. W

As preparation we have

Theorem 3.39. (Analytic Fredholm theory) Let 2 C C be a connected domain and T(-) : Q — C(V') an
analytic operator-valued map taking value in the compact operators for all z € ). Then we have one of the
two following alternatives

1. 1isin the spectrum of T for all z € ).

2. 1 € p(T(2)) forall z € Q\ X where . is a discrete set without accumulation point. The resolvent
(T(2) — 1)~ is meromorph in Q, analytic in )\ . The residue by the poles are finite rank operators
and for z € 3, T(2)€ = £ has a nontrivial solution space of finite dimension.

The proof of this theorem as well as the next few ones uses the following idea and a basic construction
which we now explain. The idea is to reduce the solvability of T'(2)€ = £ to the solvability of f(z) = 0 for
some analytic function. Now we have either f = 0 or f vanish on a discrete set. In order to do this we will
write f(z) has the determinant of some matrix obtained from a finite rank operator S(z) and the solvability
of T'(z)¢ = £ is equivalent to the solvability of T'(z)& = &.

The basic construction is as follows: Given zp € Qand z € Qg = {z : ||T(2) — T'(20)|| < 1/2} we pick
T an operator of finite rank such that

IT(20) — T < 1/2 (3.113)
Then R
IT(z)—T|| <1, (3.114)
and ~
A(z) = (1= (T(2) = 1T)) (3.115)
is invertible for z € Q. We now consider the finite rank operator
S(z) = TA(2)"" (3.116)
and note that
T(z) —1=(S(z) — 1)A(2) (3.117)

Proof of Theorem[3.39 With S(z) as in (3.117) we note that
T(z) — 1 invertible <= S(z) — 1 invertible. (3.118)

and
T'(z)§ = £ has nontrivial solutions <= S(z)¢ = £ has nontrivial solutions (3.119)

Note that the range of S(z) = T'A(z)~* is always contained in Hy = R(T') which is independent of z and
dim (Hp) = n < co. We decompose

H=Hy,® H, with H, = Hg (3.120)
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We have a unique decomposition £ = &y + &; for any £ € H and if we write

&= [ ?J } (3.121)
1
and we have the matrix-like representation
_ | Ao Ao - s
A= [ A Ay | A;; € L(H;,H;) . (3.122)

Since R(S(z)) = Hp we have (with S;; = S;;(2))

5(z) = { 580 581 } (3.123)
and so
o= [ )[g]- [ ] e
Therefore (S(z) — 1) = 0 implies & = 0 and (Sgo — 1)&o = 0 and thus
dim {€ : S(2)€ = £} = dim {€o : Soo()é0 = &0} = n < o0 (3.125)
In particular S(z)¢ = £ has a nontrivial solution if and only if
f(2) = det(Soo(2) —1) =0. (3.126)
Since Syo(z) can be represented as a n. x n matrix and is analytic then f(z) is Qg and
S = {z€Q; f(z) =0} (3.127)

is either g or is a discrete set.

In conclusion if f(z) = 0in Qg then S(z)§ = & has nontrivial solution for all z € € and so does
T(2)¢ = € and 1 belong to the spectrum of T'(z) for all z € Q.

If f(z) #0then Xy = {z € Qp; f(z) = 0} is a discrete set without accumulation points and if z ¢ 3
we have

(T(x) -1~ = A@R)7(Sk) -1

— A2)! [ (Soo 6 1)~ (Soo —711)_1501 } _

(3.128)

Since (Spo — 1)~ = f(2)~1C for some analytic matrix C, (Spp — 1)~ is meromorph in 2y with poles on
the zeros of f(z) and residuum of the form

¢ Cdo } (3.129)

Res(f | § )

which is of finite rank. The same holds for 7'(z). W
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Lemma 3.40. Let T € L(H) be compact. Then for pu # 0 the range R(T — p1) is closed.
Proof. Replacing T by 2~ 1T we need to show that R(T — 1) is closed. By (3.117) we have
(T-1)=(S-1)A (3.130)

and so R(T — 1) = R(S — 1). We also have

1)1 1)1
(S(Z) _ 1)—1 _ |: (SOO 0 1) (SOO 71]? SOl :| (3131)
Let {7, } be a Cauchy sequence in R(S — 1), i.e.
mo | _ | Soo—1 So1 Eo | _ | (Soo — 1)&ko + +So18k1 }
{771@1 } N { 0 -1 ] [fm } N [ —&k1 (3.132)

Therefore £ is a Cauchy sequence and limy, €1 = &; and limg, Sp1€x1 = So1&:1. Therefore (Spo — 1)Exko
is a Cauchy sequence. Since dim (Hp) < oo then the range of (Spp — 1) is closed. W
Lemma 3.41. Under the same assumptions as in Theorem[3.39 for = € Q we have

dim N(T(z) — 1) = dim N(T*(z) — 1). (3.133)
Proof. Since T(z) — 1 = (S(z) — 1)A(z) we have N(T'(z) — 1) = A(2) "' N(S(z) — 1). Also we have

(T(z) —1)" = A(2)*(S(z) = 1)* (3.134)
we have
dim N(T(z)* —1) = dim N(S*(z) — 1). (3.135)
So it is enough to prove the theorem for S instead of 7. Since
_ | Soo So1
S = [ 0 0 ] (3.136)
we have N(S — 1) = N(Spo — 1). Since
« _4_ | So—1 0
S*—1= [ S 1 ] (3.137)
we have ( )
. €o } { Soo — 1)éo }
0=(S*"—1 = . 3.138
(57 -1) { & Siiko (3.138)
if and only if
§o € N(Spo —1) and & = 5560 - (3.139)
Thus we have
dim N(S(z) —1) = dim N (Spo — 1) = dim N(S5; — 1) = dim N(S(2)* —1). (3.140)
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Lemma 3.42. For T € L(H) the following are equivalent.
1. T is compact.
2. T*T is compact.
3. TT* is compact.
4. T* is compact.

Proof. 1. If T is compact, then T* € L£(H) and so T*T and T'T™* are compact.
2. If T*T is compact then for any bounded sequence &,, there exists a subsequence &, = &, such that
T*T¢,; converges. Then we have

IT(& —&DIP = (T(& &), T(& — &) = (&~ &), T"T(& — &)
1€ = GINT*T(&, — &)1 < 2M[T*T (&, — &)l - (3.141)

and so T'§}, converges and so T is compact.
3. Finally we have T*T compact = T" compact = TT* compact = T compact. N

We are now in the position to prove
Theorem 3.43. (Riesz-Schauder) Let T' € L(H) compact. Then we have
1. Every spectral point p € o(T), pu # 0 is an eigenvalue of T.
2. The point spectrum o, (T) is countable, i = 0 is the only possible accumulation point of o,(T).

Proof. Let us set T'(z) = 2T Then is 2T analytic in C with values C(H ). The conditions of Theorem [3.39]
are satisfied with 2 = C. The first case cannot occur since 1 would be a spectral value of 2T for all z, i.e.
1/z would be a spectral value of T for all z € C and thus o(7") = C which is not possible for a bounded
operator.
Therefore the set
Y = {z; lis not a singular value of T'(z)} (3.142)

is a discrete set without accumulation point. Furthermore we have
G 1 N
z € 3 < 2T — 1 not bijective < T — —1 not bijective (3.143)
z

So the set
1
o(T) = {u;,u:withzeZ} (3.144)

z

is contained in 0, (7") (and is is equal to it if 0 € ¢,,(T)). W

Theorem 3.44. (Fredholm alternative) Let T' € L(H) compact. Then we have for T, = T — ul, p # 0
of one the two options
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1.
T‘ig =7 } has a 1d dimensional solution space (3.145)
T§=n
T’ig =0 has only the trivial solution (3.146)
T;§=0

2.

T,£ = 0 has a solution space M,, (dim (M) < oo)
T,;¢€ = 0 has a solution space M, (dim (M;) = dim (M,))

T,,§ = 1 has a solution if and only if n L M
T, = n has a solution if and only if n L M),

Proof. Let u# 0. If u & 0,(T') then 1. holds and £ = R,,(T")n is the unique solution of 7),§ = 7). The rest
is obvious.

If o € 0,(T) then M, = N(T),) is the eigenspace of T for the eigenvalue x and so dim(M,) < oo
and dim(M,,) = dim(M ;) by Lemma It remains to show that T),{ = n has a solution if and only if
neN(T;)*.

If 7,,§ = n then for ¢ € N(T};) we have

(7,¢) = (Tu&,¢) = (§,T;¢) =0 (3.147)

andson L N(T}).
Conversely we show that if T’ = 7 has no solution then n ¢ N (T}7)*. By Lemma R(T,) = Hy
is closed. If 7,,£ = 1 has no solution then there exists 6 > 0 such that

inf |87l = inf [T,6—n = o 3.148
Jof 15— nll = Inf [T, =l (3.148)

By Corollary chb3 to Hahn-Banach theorem the exists A € H' such that A(n) = § and A\(7),£) = 0 for all
& € H. By Riesz representation theorem there exists ¢ € H such that

Q=0 0=(T,5¢) =(&T;()forall € H. (3.149)
So T;;¢ = 0and so ¢ € N(T}). Since (n,() = 6 > 0 we have on one hand ¢ # 0 and, on the other hand,
that n € N(T,’j)l. [ ]
Before we pursue we we recall a few facts and definitions form Hilbert space theory.

e If T' = T then the eigenvalues are of T are real and the eigenvectors for distinct eigenvalues are
orthogonal.

e T is called a positive operator if the quadratic form (7¢,&) > 0 (it is important to work in complex
vector spaces here!) and for positive operator every eigenvalue is nonnegative.

o If T = T* from[2.56| we know that || T*T|| = ||T||? and so | T?|| = ||T||>. By induction ||T?"| =
T2 and thus r(T) = inf,, [T |1/" = ||T].
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e T'is called normal if T*T = T*.

Theorem 3.45. (Hilbert-Schmidt) Ler T € L(H) be compact and self-adjoint. Then there exists an or-
thonormal basis {n;} of H such that Trn; = A\yn; with lim; \; = 0. If py, ua, - -+ are the pairwise distinct
eigenvalues of T and E1, Fs, - - - the corresponding eigenspace of T. Then we have

H=FE ®FEy® - T =) AP, (3.150)

where P; is the orthogonal projection on H;.

Proof. Eigenspaces for different eigenvalues are orthogonal, so we can choose in each eigenspace an or-
thonormal basis and this gives an orthonormal sequence {r;}. Let H; be the closed linear span of {eta;}.
Clearly T maps H; into itself. Let us writt H = H; ® Hi-. and let us assume Hi- is not trivial. Since
T = T* we have T maps Hi into itself. Let T = T|g, and T5 = T|x,1. The operator T is self-adjoint
and compact.

From Riesz-Schauder theorem if ;1 € o(T3) with 4 # 0 then p € 0,(7%). But then p is also an
eigenvalue of 7' which is impossible. Therefore o(7T;) = {0} = ||T%|| and thus T» = 0. So Hji is
the eigenspace of T for the eigenvalue 0. But since all the eiegenspace for 7" are already in H; we have
H=0 W

We have previously developed a functional calculus to define f(T") for general bounded operators and
were able to use functions f which are analytic in an open set containing ¢ (7"). For a compact self-adjoint
operator T" we can define f(T) for every function defined on the spectrum of A.

Theorem 3.46. (Functional Calculus) Let T' be a compact self-adjoint operator and f a bounded complex-
valued function defined on o(T). To such an f we can define f(T') such that

1. If f =1then f(T) = 1.
2. If f(x) =x then f(T) =T.

3. The map f — f(T) is an isomorphism of the ring of bounded functions on o(A) into the algebra
L(H).

4. The isomorphism is isometric:
M) = sup [f(u) (3.151)
neo(T)
5. If f is real-valued, f(T) is symmetric.
6. If f is positive on o (T), then f(T) is positive.

Proof. The proof is shorter than the statement. From Hlbert-Schmidt theorem we can pick an o.n.b. basis
{nr.} of eigenvectors such that Ty = puxny.. If § € H has the decompostion § = n; then define f(7)
by

FM)E = fluw)zrm - (3.152)

The theorem is now obvious. W

We also have
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Theorem 3.47. Suppose Ty, - - - T,, are bounded operators in L(H) such that
1. Ty, is self-adjoint for k = 1,--- | n.
2. Ty is compact.
3. TyTy = Ty T for all k, L.
Then there exists an orthonormal basis {&;} of H such that &; is an eigenvector for all T,
Proof. Let S; be the eigenspaces of 17 for the eigenvalue p,;. Then by Hilbert-Schmidt theorem we have
H=5&5--- (3.153)
Then the subspace S; is invariant under T}, since if £ € S;m, then T¢ = p;€ then
NT§ = ThThE = piTig (3.154)

and thus T3¢ € S;. The restriction of 15 on .S, is finite-dimensional and thus we can choose a basis of .5;
such that the basis elements are eigenvectors for 7} and 7> and we can repeat the arguments for 75, etc....
Since the .S, are finite dimensional the procedure will stop after a finite number of steps. W

Corollary 3.48. If T is a normal operator then there exists an o.n.b {&;} of H such that

TE = (€ 6n)én (3.155)
n=1
Proof. We write
T+T* T-T*
T = J; - (3.156)
—— N———
=R =J

Then T  and J are compact, T is self-adjoint and ¢.J is self-adjoint. W

Finally we consider non self-adjoint operators.

Theorem 3.49. Let Let T € L(H) compact. Then there exists 2 sequences {n;}}_, and {¢;}N_, in H (with
N finite or o) and a sequence {v;} of non-negative numbers such that

T = lel-(-, i) Bi (3.157)

i=1

Proof. If T is compact then T*T is compact, self-adjoint, and positive. So there exists an orthonormal
sequence {7);} such that
T°Tn; = pin; (3.158)

with p; > 0 and lim; p; = 0. Moreover 1T restricted on the orthogonal complement to the span of the 7;
is equal to 0. Now let

vi = /i (3.159)
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and set
G = ~Ti,. (3.160)

‘We have then

1 1 1
iCG) = —(Tn;, Tn;) = — (;, TTn;) = ——pi(n;,m:) = 055 3.161
(¢ Cj) ViV (T 77]) viv; (n m) viv; Hj (n 77]) J ( )

and so the f3; are orthonormal. For any £ € H we have

N
= (Emmi+&-. (3.162)
i=1
where T*T¢+ = 0. This implies that
0=(6"T"T¢h) = (T€H,T¢h) = |TeH|? (3.163)
and so T¢+ = 0. So we have
N N
TS = Z & i Tnz Zyz & mi sz (3.164)
i=1 i=1

as claimed. W

3.4 Applications

3.5 Exercises

2
—TX

Exercise 21. 1. Show that the Fourier transform 7" maps the space of function of the form p(x)e
where P is a polynomial of degree < n into itself.

2. Find the eigenfunctions of T'.
Hint: With our conventions the Fourier transform of e

771’1)2

is itself.

Exercise 22. Prove Lemma[3.1§]

Exercise 23. Show that if T" is a normal operator (i.e., T*T = TT™*) then r(T) = ||T|.
Exercise 24. For T' € L(V) let us define 7(7T') by

T(T) = urerza%) Re (1) (3.165)

i.e. the spectrum of 7" is contained in the half-plane {Re (z) < 7(T')}. Show that we have

1 nT
7(T) = lim M

n—00 n

(3.166)
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Exercise 25. Suppose T is bounded operator on a Hilbert space H such that T¢;, = Ai&; with & an
orthonormal basis of H. Show that T is compact if and only if A, — 0.

Exercise 26. Show that the operator T'f(t) = fot f(s)ds on C[0,1] is compact and has no eigenvalues.
Give an example of an operator 7" on [P which is compact and has no eigenvalue.

Exercise 27. Consider the integral equation
1
10— [ K(t5)5(5)ds = gt (3.167)
0

with a continuous k(t, s) and denote T'f(t) = fol k(t,s)f(s)ds.
1. Let 7(T) be the spectral radius of 7" on C[0, 1]. Show that if |u| < 7 then (3.167) has a unique

(
solution which can be written in the form

1
f@®) = g(¥) +/0 r(t, s)g(s)ds (3.168)

(the kernel (r(t, s) is called the resolvent kernel). Hint: Neumann series.
2. Compute the resolvent kernel and the solution for the integral equation

1

1
flt) = 5/0 el f(s)ds + g(s). (3.169)

Exercise 28. Consider a kernel k(¢,s) = 2?21 a;(t)b)j(s). Without loss of generality we may assume

that the a; and b; are linearly independent. Show that if the equation

1
10— [ e9)f(5)ds = g0 (3.170)
0
has a solution then it must be of the form
n 1
f&) = g®) + 1Y cia;(t),, ¢ = / bj(s)z;(s) ds (3.171)
=1 0
and the constants c¢; must satisfy the linear equations
=Y ajkck = yi, (3.172)
j=1
with
1 1
ajr = / bi(s)ar(s)ds, y; = / bi(s)y(s)ds (3.173)
0 0

Exercise 29. Consider the equation

f) — M/o (s+t)z(t)dt = g(s) (3.174)
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1. Use the previous exercise to solve this equation if 2 + 12y — 12 # 0.
2. Find the eigenvalues and eigenfunctions.

Exercise 30. Let H be a Hilbert space and T a self-adjoint compact operator with eigenvalues j;, with
eigenvectors &;. Consider the equation
AL=T)§ =7 (3.175)

for a given A # 0 and n € H given. Show that this equation has a solution if and only if 7 is orthogonal to
N (A1 — T') and that the set of all solution general solution is given by

E=6&+C (3.176)

where ¢ € N(A1 —T) and

& = *n+ Z (. €0 (3.177)

un#)\

Hint: Consider separately the case where A is an eigenvalue or not. Do not forget the show that & is
well-defined.
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