
Math 697: Homework 1

Exercise 1 (a) For positive numbers a and b, the Pareto(a, b) distribution has p.d.f f(x) =
abax−a−1 for x ≥ b and f(x) = 0 for x < b. Apply the inversion method to generate Pareto(a, b).
(b) The standardized logistic distribution has the p.d.f f(x) = e−x

(1+e−x)2
. Use the inversion method

to generate a random variable having this distribution.

Exercise 2 In class we have formulated the rejection method for continuous random variables
but it can be extended to discrete random variables too.
(a) Suppose now X and Y are discrete random variables, both taking values in the same finite
or countable set S. Formulate and prove the rejection method in this case.
(b) Set-up an algorithm to simulate a Poisson random variable with parameter λ using a geometric
random variable with parameter p. Discuss the choice of p if λ is fixed.

Exercise 3 Consider the technique of generating a Γn,λ random variable by using the rejection
method with g(x) being the p.d.f of an exponential with parameter λ/n.

1. Show that the average number of iterations of the algorithm is nne1−n/(n− 1)!.

2. Use Stirling formula to show that for large n the answer in 1. is approximately e
√

(n− 1)/2π.

3. Show that the rejection method is equivalent to the following

• Step 1: Generate Y1 and Y2 independent exponentials with parameters 1.

• Step 2: If Y1 < (n− 1)[Y2 − log(Y2)− 1] return to step 1.

• Step 3: Set X = nY2/λ.

Exercise 4 (Generating a uniform distribution on the permutations)
In this problem we will use the following notation. If x is positive real number we denote

by [x] the integer part of x, i.e. [x] is the greatest integer less than or equal x. For example
[2.37] = 2.

Consider a permutation of (1, 2, 3, · · ·n). We denote by S(i) the element in position i. For
example for the permutation (2, 4, 3, 1, 5) of 5 elements we have S(1) = 2, S(2) = 4, and so on.

Consider the following algorithm

1. Set k = 1

2. Set S(1) = 1

3. If k = n stop. Otherwise let k = k + 1.

4. Generate a random number U , and let

S(k) = S([kU ] + 1) ,

S([kU ] + 1) = k .

Go to step 3.
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Show that at iteration k, – i.e. when the value of S(k) is initially set– S(1), S(2), S(k) is a
random permutation of 1, 2, · · · , k, i.e., all permuation are equally likely and occur with probability
1/k!.

Hint: Relate the probability Pk on the set of permutation of obtained at iteration k with the
probability Pk−1 obtained at iteration k − 1.

Exercise 5 On a friday night you enter a BBQ restaurant which promises that every customer
is served within a minute. Unfortunately there are 30 customers in line and you an appointment
will force you to leave in 40 minutes. Being a probabilist you assume that the waiting time of each
customer is exponential is mean 1. Estimate the probability that you will miss your appointment
if you wait in line until you are served using (a) Chebyshev inequality, (b) The central limit
theorem, (c) Chernov bounds.

Exercise 6 (Hit-or-miss method)

1. Suppose that you wish to estimate the volume of a set B contained in the Euclidean space
Rk. You know that B is a subset of A and you know the volume of A. The “hit-or-miss”
method consists in choosing n independent points uniformly at random in A and use the
fraction of points which lands in B to get an estimate of the volume of B. (We used this
method to compute the number π in class.) Write down the estimate In obtained with this
method and compute var(In). (This will be expressed in terms of the volume of A and B.)

2. Suppose now that D is a subset of A and that we know the volume of D and the volume of
D∩B. You decide to estimate the volume of B by choosing n points at random from A\D
and counting how many land in B. What is the corresponding estimator I ′n of the volume
of B for this second method? Show that this second method is better than the first one in
the sense that var(I ′n) ≤ var(In).

3. How would you use this method concretely to improve the estimation of the number π?
Compute the corresponding variances.

Exercise 7

Suppose f is a function on the interval [0, 1] with 0 < f(x) < 1. Here are two ways to estimate
I =

∫ 1
0 f(x)dx.

(a) Use the “hit-or-miss” from the previous problem with A = [0, 1] × [0, 1] and B = {(x, y) :
0 ≤ x ≤ 1 , 0 ≤ y ≤ f(x)} .
(b) Use the simple sampling algorithm with U1, U2, · · · be i.i.d. uniform random variables on [0, 1]
and

În =
1
n

n∑
i=1

f(Ui) .

Find which one of theses two methods is the most efficient.

Exercise 8 (Antithetic variables) In this problem we describe an example of a method to
reduce the variance of the simple sampling method.
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1. Suppose that k and h are both nondecreasing (or both nonincreasing) functions then show
that

cov(k(X), h(X)) ≥ 0 .

Hint: Let Y be a random variable which is independent of X and has the same distribution
as X. Then by our assumption on h, k we have (k(X) − k(Y ))(h(X) − h(Y )) ≥ 0. Take
then expectations.

2. Consider the integral I =
∫ 1
0 k(x)dx and assume that k is nondecreasing (or nonincreasing).

The simple sampling estimator is

In =
1
n

n∑
i=1

k(Ui) .

where Ui are independent U([0, 1]) random variables. Consider now the alternative estima-
tor: for n even set

În =
1
n

n/2∑
i=1

k(Ui) + k(1− Ui) .

where Ui are independent U([0, 1]) random variables. Show that In is an estimator for I
and that var(În) ≤ var(In).
Hint: Use part 1. to show 1

2var(k(U1) + k(1− U1)) ≤ var(k(U1)).
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