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Chapter 1

Existence and Uniqueness

1.1 Introduction

An ordinary differential equation (ODE) is given by a relation of the form

F (t, x, x′, x′′, · · · , x(m)) = 0 , (1.1)

where t ∈ R, x, x′, · · · , x(m) ∈ Rn and the function F is defined on some open set of
R×Rn × · · · ×Rn. A function x : I → Rn, where I is an interval in R, is a solution
of (1.1) if x(t) is of class Cm (i.e., m-times continuously differentiable) and if

F (t, x(t), x′(t), x′′(t), · · · , x(m)(t)) = 0 for all t ∈ I . (1.2)

We say that the ODE is of order m if the maximal order of the derivative occurring in
(1.1) is m.

Example 1.1.1 Clairaut equation (1734) Let us consider the first order equation

x− tx′ + f(x′) = 0 , (1.3)

where f is some given function. It is given, in implicit form, by a nonlinear equation
in x′. It is easy to verify that the lines x(t) = Ct− f(C) are solutions of (1.3) for any
C. Consider for example f(z) = z2 + z, then one sees easily that given a point (t0, x0)
there exists either 0 or 2 such solutions passing by the point (t0, x0) (see Figure 1.1).

As we see from this example, it is in general very difficult to obtain results on the
uniqueness or existence of solutions for general equations of the form (1.1). We will
therefore restrict ourselves to situations where (1.1) can be solved as a function of x(m),

x(m) = g(t, x, x′, · · · , x(m−1)) . (1.4)
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Figure 1.1: Some solutions for Clairault equation for f(z) = z2 + z.

Such an equation is called an explicit ODE of order m. One can always reduce an
ODE of order m to a first order ODE for a vector in a space of larger dimension. For
example we can introduce the new variables

x1 = x , x2 = x′ , x3 = x′′ · · · , xm = x(m−1) , (1.5)

and rewrite (1.4) as the system

x′1 = x2 ,

x′2 = x3 ,
... (1.6)

x′m−1 = xm ,

x′m = g(t, x1, x2, · · · , xm) .

This is an equation of order 1 for the supervector x = (x1, · · · , xm) ∈ Rnm (each xi is
in Rn) and it has the form x′ = f(t, x). Therefore, in general, it is sufficient to consider
the case of first order equations (m=1).

If f does not depend explicitly on t, i.e., f(t, x) = f(x), the ODE x′ = f(x) is
called autonomous. The function f : U → Rn, where U is an open set of Rn, defines a
vector field. A solution of x′ = f(x) is then a parametrized curve x(t) which is tangent
to the vector field f(x) at any point, see figures 1.2 and (1.3).

Note a non-autonomous ODE x′ = f(t, x) with x ∈ Rn can be written as an
autonomous ODE in Rn+1 by setting

y =

(
x
t

)
y′ =

(
x′

t′

)
=

(
f(t, x)

1

)
≡ F (y) . (1.7)
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Example 1.1.2 Predator-Prey equation Let us consider the equation

x′ = x(α− βy) , y′ = y(γx− δ) , (1.8)

where α, β, γ, δ are given positive constants. Here x(t) is the population of the preys
and y(t) is the population of the predators. If the population of predators y is below
the threshold α/β then x is increasing while if y is above α/β then x is decreasing.
The opposite holds for the population y. In order to study the solutions, let us divide
the first equation, by the second one and consider x as a function of y. We obtain

dx

dy
=

x

y

(α− βy)

(γx− δ)
or

(γx− δ)
x

dx =
(α− βy)

y
dy . (1.9)

Integrating gives
γx− δ log x = α log y − βy + Const. (1.10)

One can verify that the level curves (1.10) are closed bounded curves and each solution
(x(t), y(t)) stays on a level curve of (1.10) for any t ∈ R. This suggests that the
solutions are periodic (see Figure 1.2).

Figure 1.2: The vector field for the predator-prey equation with α = 1, β = 2, γ = 3,
δ = 2 and the solutions passing through the point (1, 1) and (0.5, 0.5).

Example 1.1.3 van der Pol equation. The van der Pol equation

x′′ = ε(1− x2)x′ − x . (1.11)
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It can written as a first order system by setting y = x′

x′ = y ,

y′ = ε(1− x2)y − x . (1.12)

It is a perturbation of the harmonic oscillator (ε = 0) x′′ + x = 0 whose solutions are
the periodic solution x(t) = A cos(t − φ) and y(t) = x′(t) = −A sin(t − φ) (circles).
When ε > 0 one observes that one periodic solution survives which is the deformation
of a circle of radius 2 and all other solution are attracted to this periodic solution (limit
cycle), see Figure 1.3.

Figure 1.3: The vector field for the van der Pol equation with ε = 0.1 as well as two
solutions passing through the points (.1, .2) and (2, 3).

We will discuss these examples in more details later. For now we observe that, in
both cases, the solutions curves never intersect. This means that there are never two
solutions passing by the same point. Our first goal will be to find sufficient conditions
for the problem

x′ = f(t, x) , x(t0) = x0 , (1.13)

to have a unique solution. We say that t0 and x0 are the initial values and the problem
(1.13) is called a Cauchy Problem or an initial value problem (IVP).

1.2 Banach fixed point theorem

We will need some (simple) tools of functional analysis. Let E be a vector space
with addition + and multiplication by scalar λ in R or C. A norm on E is a map
‖ · ‖ : E → R which satisfies the following three properties

• N1 ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0 ,
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• N2 ‖λx‖ = |λ|‖x‖ ,

• N3 ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality) .

A vector space E equipped with a norm ‖ · ‖ is called a normed vector space.
In a normed vector space E we can define the convergence of sequence {xn}. We

say that the sequence {xn} converges to x ∈ E, if for any ε > 0, there exists N ≥ 1
such that, for all n ≥ N , we have ‖xn − x‖ ≤ ε.

We say that {xn} is a Cauchy sequence if for any ε > 0, there exists N ≥ 1 such
that, for all n,m ≥ N , we have ‖xn − xm‖ ≤ ε.

Definition 1.2.1 A normed vector space E is said to be complete if every Cauchy
sequence in E converges to an element of E. A complete normed vector space E is
called a Banach space.

Let ‖ · ‖ and ‖ · ‖? denote two norms on the vector space E. We say that the norms
‖ · ‖ and ‖ · ‖? are equivalent if there exist positive constants c and C such that

c‖x‖ ≤ ‖x‖? ≤ C‖x‖ for all x ∈ E .

It is easy to check that the equivalence of norm defines an equivalence relation. Further-
more if a Cauchy sequence for a norm ‖ · ‖ is also a Cauchy sequence for an equivalent
norm ‖ · ‖?.

Example 1.2.2 The vector space E = Rn or Cn with the euclidean norm ‖x‖2 =
(
∑
i x

2
i )

1/2 is a Banach space. Other examples of norms are ‖x‖1 =
∑
i |xi| or x∞ =

supi |xi|. In any case Rn or Cn equipped with any norm is a Banach space, since all
norm are equivalent in a finite-dimensional space (see exercises).

The previous example shows that for finite dimensional vector spaces the choice of
a norm does not matter much. For infinite-dimensional vector spaces the situation is
very different as the following example demonstrate.

Proposition 1.2.3 Let

C([0, 1]) = {f : [0, 1]→ Rn ; f continuous} . (1.14)

With the norm
‖f‖∞ = sup

t∈[0,1]

|f(t)| . (1.15)

C([0, 1]) is a Banach space. With either of the norms

‖f‖1 =
∫ 1

0
|f(t)| dt , or ‖f‖2 =

(∫ 1

0
|f(t)|2 dt

)1/2

, (1.16)

C([0, 1]) is not complete.
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Proof: We let the reader verify that ‖f‖1, ‖f‖2, and ‖f‖∞ are norms.
Let {fn} be a Cauchy sequence for the norm ‖ · ‖∞. We have then

|fn(t)− fm(t)| ≤ ‖fn − fm‖∞ ≤ ε for all n,m ≥ N . (1.17)

This implies that, for any t, {fn(t)} is a Cauchy sequence in R which is complete.
Therefore {fn(t)} converges to an element of R which we call f(t). It remains to show
that the function f(t) is continuous. Taking the limit m→∞ in (1.17), we have

|fn(t)− f(t)| ≤ ε for all n ≥ N , (1.18)

where N depends on ε but not on t. This means that fn(t) converges uniformly to f(t)
and therefore f(t) is continuous.

Let us consider the sequence {fn} of piecewise linear continuous functions, where
fn(t) = 0 on [0, 1/2 − 1/n] and fn(t) = 1 on [1/2 + 1/n, 1] and linearly interpolating
in between. One verifies easily that for any m ≥ n we have ‖fn − fm‖1 ≤ 1/n and
‖fn − fm‖2 ≤ 1/

√
n. Therefore {fn} is a Cauchy sequence. But the limit function is

not continuous and therefore the sequence does not converge in C([0, 1]).

We have also

Proposition 1.2.4 Let X be an arbitrary set and let us consider the space

B(X) = {f : X → R ; f bounded} . (1.19)

with the norm
‖f‖∞ = sup

x∈X
|f(x)| . (1.20)

Then B(X) is a Banach space.

Proof: The proof is almost identical to the first part the previous proposition and is
left to the reader.

In a Banach space E we can define basic topological concepts as in Rn.

• A open ball of radius r and center a is the set Bε(a) = {x ∈ E ; ‖x− a‖ < r}.

• A neighborhood of a is a set V such that Bε(a) ⊂ V for some ε > 0.

• A set U ⊂ E is open if U is a neighborhood of each of its element, i.e., for any
x ∈ U , there exists ε > 0 such that Bε(x) ⊂ U .

• A set V ⊂ E is closed if the limit of any convergent sequence {xn} is in V .

• A set K is compact if any sequence {xn} with xn ∈ K has a subsequence which
converges in K.
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• Let E and F be two Banach spaces and U ⊂ E. A function f : U → F is
continuous at x0 ∈ U if for all ε > 0, there exists δ > 0 such that x ∈ U and
‖x− x0‖ < δ implies that ‖f(x)− f(x0)‖ < ε.

• The map x 7→ ‖x‖ is a continuous function of E to R, since |‖x‖ − ‖x0‖| ≤
‖x− x0‖ by the triangle inequality.

Certain properties which are true in finite dimensional Banach spaces are not true in
infinite dimensional Banach spaces such as the function spaces we have considered in
Propositions 1.2.3 and 1.2.4. For example we show that

• The closed ball {x ∈ E ; ‖x‖ ≤ 1} is not necessarily compact.

• Two norms on a Banach space are not always equivalent.

• The theorem of Bolzano-Weierstrass which says each bounded sequence has a
convergent subsequence is not necessarily true.

• The equivalence of K compact and K closed and bounded is not necessarily true.

The proposition 1.2.3 shows that ‖ · ‖∞ and ‖ · ‖1 are not equivalent. For, if they were
equivalent, any Cauchy sequence for ‖ · ‖1 would be a Cauchy sequence ‖ · ‖∞. But we
have constructed explicitly a Cauchy sequence for ‖·‖1 which is not a Cauchy sequence
for ‖ · ‖∞. Let us consider the Banach space B([0, 1]) and let fn(t) to be equal to 1 if
1/(n+1) < t ≤ 1/n and 0 otherwise. We have ‖fn‖∞ = 1 for all n and ‖fn−fm‖∞ = 1
for any n,m. Therefore {fn} cannot have a convergent subsequence. This shows at
the same time, that the unit ball is not compact, that Bolzano-Weierstrass fails, and
that closed bounded sets are not necessarily compact.

Let us suppose that we want to solve a nonlinear equation in a Banach space E.
Let f be a function from E to E then we might want to solve

f(x) = x find a fixed point of f . (1.21)

The next theorem will provide a sufficient condition for the existence of a fixed point.

Theorem 1.2.5 (Banach Fixed Point Theorem (1922)) Let E be a Banach space,
D ⊂ E closed and f : D → E a map which satisfies

1. f(D) ⊂ D .

2. f is a contraction on D, i.e., there exists α < 1 such that,

‖f(x)− f(y)‖ ≤ α‖x− y‖ , for all x, y ∈ D . (1.22)

Then f has a unique fixed point x in D, f(x) = x.
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Proof: We first show uniqueness. Let us suppose that there are two fixed points x and
y, i.e., f(x) = x and f(y) = y. Since f is a contraction we have

‖x− y‖ = ‖f(x)− f(y)‖ ≤ α‖x− y‖ (1.23)

with α < 1, this is possible only if x = y.
To prove the existence we choose an arbitrary x0 ∈ D and we consider the iteration

x1 = f(x0), · · · , xn+1 = f(xn), · · ·. Since f(D) ⊂ D this implies that xn ∈ D for any
n. Let us show that {xn} is a Cauchy sequence. We have ‖xn+1 − xn‖ = ‖f(xn) −
f(xn−1)‖ ≤ α‖xn − xn−1‖. Iterating this inequality we obtain

‖xn+1 − xn‖ ≤ αn‖x1 − x0‖ . (1.24)

If m > n this implies that

‖xm − xn‖ ≤ ‖xm − xm−1‖+ ‖xm−1 − xm−2‖+ · · · ‖xn+1 − xn‖
≤

(
αm−1 + αm−2 + · · ·αn

)
‖x1 − x0‖

≤ αn

1− α
‖x1 − x0‖ . (1.25)

Therefore {xn} is a Cauchy sequence since αn → 0. Since E is a Banach space, this
sequence converges to x ∈ E. The limit x is in D since D is closed. Since f is a
contraction, it is continuous and we have

x = lim
n→∞

xn+1 = f( lim
n→∞

xn) = f(x) , (1.26)

i.e., x is a fixed point of f .

The proof of the theorem is constructive and provides the following algorithm to
construct a fixed point.

Method of successive approximations: To solve f(x) = x

• Choose an arbitrary x0.

• Iterate: xn+1 = f(xn).

Even if the hypotheses of the theorem are difficult to check, one might apply this
algorithm. If the algorithm converges this gives a fixed point, although not necessarily
a unique one.

Example 1.2.6 The function f(x) = cos(x) has a fixed point on D = [0, 1]. By the
mean value theorem there is ξ ∈ (x, y) such that cos(x) − cos(y) = sin(ξ)(y − x),
thus | cos(x) − cos(y)| ≤ supt∈[0,1] | sin(t)||x − y| ≤ sin(1)|x − y|, and sin(1) < 1. One
observes a quite rapid convergence to the solution 0.7390 · · ·. For example we have
x0 = 0, x1 = 1, x2 = 0.5403, x2 = 0.8575, x3 = 0.6542, x4 = 0.7934, x5 = 0.7013,
x6 = 0.7639, · · ·.
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Example 1.2.7 Consider the Banach space C([0, 1]) with the norm ‖ · ‖∞. Let f ∈
C([0, 1]) and let k(t, s) be a function of 2 variables continuous on [0, 1]× [0, 1]. Consider
the fixed point problem

x(t) = f(t) + λ
∫ 1

0
k(t, s)x(s) ds . (1.27)

We assume that λ is such that α ≡ |λ| sup0≤t≤1

∫ 1
0 |k(t, s)| ds < 1. Consider the map

(Tx)(t) = f(t) + λ
∫ 1

0 k(t, s)y(s). The map T : C([0, 1]) → C([0, 1]) is well defined and
one has the bound

|(Tx)(t)− Ty(t)| ≤ |λ|
∫ 1

0
|k(t, s)||x(s)− y(s)| ds ≤ ‖x− y‖∞|λ| sup

0≤t≤1

∫ 1

0
|k(t, s)| ds .

(1.28)
Taking the supremum over t on the left side gives

‖Tx− Ty‖∞ ≤ α‖x− y‖∞ , (1.29)

so that T is a contraction. Hence the Banach fixed point theorem with D = C([0, 1])
implies the existence of a unique solution for (1.27). The method of successive approx-
imation applies and the iteration is, y0(t) = f and

yn+1(t) = f(t) + λ
∫ 1

0
k(t, s)yn(s) ds . (1.30)

1.3 Existence and uniqueness for the Cauchy prob-

lem

Let us consider the Cauchy problem

x′(t) = f(t, x(t)) , x(t0) = x0 , (1.31)

where f : U → Rn (U is an open set of R × Rn) is a continuous function. In order
to find a solution we will rewrite (1.31) as a fixed point equation. We integrate the
differential equation between t0 an t, we obtain the integral equation

x(t) = x0 +
∫ t

t0
f(s, x(s)) ds . (1.32)

Every solution of (1.31) is thus a solution of (1.32). The converse also holds. If x(t) is
a continuous function which verifies (1.32) on some interval I, then it is automatically
of class C1 and it satisfies (1.31).

Let I be an interval and let us define the map T : C(I)→ C(I) given by

(Tx)(t) = x0 +
∫ t

t0
f(s, x(s)) ds . (1.33)
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The integral equation (1.32) can then be written as the fixed point equation

(Tx)(t) = x(t) , (1.34)

i.e., we have transformed the differential equation (1.31) into a fixed point problem.
The method of successive approximation for this problem is called

Picard-Lindelöf iteration:

x0(t) = x0 (or any other function) ,

xn+1(t) = x0 +
∫ t

t0
f(s, xn(s)) ds . (1.35)

Example 1.3.1 Let us consider the Cauchy problem

x′ = −x2 , x(0) = 1 . (1.36)

The solution is x(t) = 1
1+t

. The Picard-Lindelöf iteration gives x0 = 1, x1 = 1 − t,
x2 = 1 − t + t2 − t3/3, and so on. One sees from Figure 1.4 that it converges in a
suitable interval around 0 but diverges for larger values of t.

Figure 1.4: The first four iterations for the Picard Lindelöf iteration scheme for the
Cauchy problem x′ = −x2, x(0) = 1.

The next result shows how to choose the interval I such that T maps a suitably
chosen set D into itself. We have

Lemma 1.3.2 Let A = {(t, x) ; |t−t0| ≤ a , ‖x−x0‖ ≤ b}, f : A→ Rn be a continuous
function with M = sup(t,x)∈A |f(t, x)|. We set α = min(a, b/M). The map T given by
(1.33) is well-defined on the set

B = {x : [t0 − α, t0 + α]→ Rn , x continuous and ‖x(t)− x0‖ ≤ b} . (1.37)

and it satisfies T (B) ⊂ B.
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Proof: The lemma follows from the estimate

‖(Tx)(t)− x0‖ =
∥∥∥∥∫ t

t0
f(s, x(s)) ds

∥∥∥∥ ≤M |t− t0| ≤Mα ≤ b . (1.38)

We say that a function f : A → Rn (with A is in the previous lemma) satisfies a
Lipschitz condition if

‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖ for all (t, x), (t, y) ∈ A . (1.39)

The constant L is called the Lipschitz constant.

Remark 1.3.3 In order to illustrate the meaning of condition (1.39), let us suppose
that f(t, x) = f(x) does not depend on t and that we have ‖f(x)− f(y)‖ ≤ L‖x− y‖
whenever x and y are in the closed ball Bb(x0). This clearly implies that f is continuous
in Bb(x0) and f is called Lipschitz continuous. The opposite does not hold, for example

the function f(x) =
√
|x| is continuous but not Lipschitz continuous at 0.

If f is of class C1, then f is Lipschitz continuous. To see this consider the line
z(s) = x+ s(y − x) which interpolates between x and y. We have

‖f(y)− f(x)‖ =

∥∥∥∥∥
∫ 1

0

d

ds
f(z(s)) ds

∥∥∥∥∥ =
∥∥∥∥∫ 1

0
f ′(z(s))(y − x) ds

∥∥∥∥
≤ sup

z∈Bb(x0)

‖f ′(z)‖‖y − x‖ , (1.40)

and therefore f is Lipschitz continuous with L = sup{x , ‖x−x0‖≤b} ‖f
′(x)‖. On the other

hand Lipschitz continuity does not imply differentiability as the function f(x) = |x|
demonstrates.

The condition (1.39) requires that f(t, x) is Lipschitz continuous in x uniformly in
t with |t− t0| ≤ a.

If f(t, x) satisfy a Lipschitz condition we have, for any t ∈ I = [t0 − α, t0 + α],

‖(Tx)(t)− (Tz)(t)‖ ≤
∫ t

t0
‖f(t, x(t))− f(t, z(t))‖ dt

≤
∫ t

t0
L‖x(t)− z(t)‖ dt

≤ αL sup
t∈I
‖x(t)− z(t)‖ ≤ αL‖x− z‖∞ . (1.41)

Taking the supremum over t on the left side shows that ‖Tx − Tz‖∞ ≤ αL‖x − z‖.
If αL < 1 we can apply the Banach fixed point theorem to prove existence of a fixed
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point and show the existence and uniqueness for the solution of the Cauchy problem
for t in some sufficiently small interval around t0.

In fact one can omit the condition αL < 1 by applying the method of successive
approximation directly without invoking the Banach Fixed Point Theorem. This is the
content of the following theorem which is the basic result on existence of local solutions
for the Cauchy problem (1.31). Here local means that we show the existence only of
x(t) is in some interval around t0.

Theorem 1.3.4 (Existence and uniqueness for the Cauchy problem) Let A =
{(t, x) ; |t− t0| ≤ a , ‖x− x0‖ ≤ b} and let us suppose that f : A→ Rn

• is continuous,

• satisfies a Lipschitz condition.

Then the Cauchy problem x′ = f(t, x), x(t0) = x0 has a unique solution on I =
[t0 − α, t0 + α], where α = min(a, b/M) with M = sup(t,x)∈A ‖f(t, x)‖.

Proof: We prove directly that the Picard-Lindelöf iteration converge uniformly on I to
a solution of the Cauchy problem. In a first step we show, by induction, that

‖xk+1(t)− xk(t)‖ ≤ MLk
|t− t0|k+1

(k + 1)!
for |t− t0| ≤ α . (1.42)

For k = 0, we have ‖x1(t)− x0‖ = ‖
∫ t
t0
f(s, x(s)) ds‖ ≤M |t− t0|. Let us assume that

(1.42) holds for k − 1. Then we have

‖xk+1(t)− xk(t)‖ ≤
∫ t

t0
‖f(s, xk(s))− f(s, xk−1(s)‖ ds ≤ L

∫ t

t0
‖xk(s)− xk−1(s)‖ ds

≤ MLk
∫ t

t0

|s− t0|k

k!
ds = MLk

|t− t0|k+1

(k + 1)!
. (1.43)

Using (1.42), we show that {xk(t)} is a Cauchy sequence for the norm ‖x‖∞ =
supt∈I ‖x(t)‖. We have

‖xk+m(t)− xk(t)‖ ≤ ‖xk+m(t)− xk+m−1(t)‖+ · · ·+ ‖xk+1(t)− xk(t)‖

≤ M

L

(
Lk+m|t− t0|k+m

(k +m)!
+ · · ·+ Lk+1|t− t0|k+1

(k + 1)!

)

≤ M

L

∞∑
j=k+1

(Lα)j

j!
, (1.44)

and the right hand side is the reminder term of a convergent series and thus goes to 0
as k goes to ∞. The right hand side is independent of t so {xk} is a Cauchy sequence
which converges uniformly to a continuous function x : I → Rn.
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To show that x(t) is a solution of the Cauchy problem we take the limit n → ∞
in (1.35). The left side converges uniformly to x(t). Since f is continuous and A is
compact f(t, xk(t)) converges uniformly to f(t, x(t)) on A. Thus one can exchange
integral and the limit and x(t) is a solution of the integral equation (1.32).

It remains to prove uniqueness of the solution. Let x(t) and z(t) be two solutions
of (1.32). By recurrence we show that

‖x(t)− y(t)‖ ≤ 2MLk
|t− t0|k+1

(k + 1)!
. (1.45)

We have x(t) − y(t) =
∫ t
t0

(f(s, x(s)) − f(s, y(s))) ds and therefore ‖x(t) − y(t)‖ ≤
2M |t− t0| which (1.45) for k = 0. If (1.45) holds for k − 1 we have

‖x(t)− y(t)‖ ≤
∫ t

t0
L‖x(s)− y(s)‖ ds ≤ 2MLk

∫ t

t0

|s− t0|k

k!
dt

≤ 2MLk
|t− t0|k+1

(k + 1)!
, (1.46)

and this proves (1.45). Since this holds for all k, this shows that x(t) = y(t).

1.4 Peano Theorem

In the previous section we established a local existence result by assuming a Lipschitz
condition. Simple examples show that this condition is also necessary.

Example 1.4.1 Consider the ODE

x′ = 2
√
|x| . (1.47)

We find that x(t) = (t − c)2 for t > c and x(t) = −(c − t)2 for t < c is a solution
for any constant c. But x(t) ≡ 0 is also a solution. The Cauchy problem with, say,
x(0) = 0 has infinitely many solutions. For t > 0, x(t) ≡ 0 is one solution, x = t2 is
another solution, and more generally x(t) = 0 for 0 ≤ t ≤ c and then x(t) = (t− c)2 for

t ≥ c is also a solution for any c. This phenomenon occur because
√
|x| is not Lipschitz

continuous at x = 0.

We are going to show that, without Lipschitz condition, we can still obtain existence
of solutions, but not uniqueness. Instead of using the Picard-Lindelöf iteration we are
using another approximation scheme. It turns out to be the simplest algorithm used
for numerical approximations of ODE’s.
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Euler polygon (1736) Fix some h 6= 0, the idea is to approximate the solution
locally by x(t+h) ' x(t)+hf(t, x(t)). Let us consider now the sequence {tn, xn} given
recursively by

tn+1 = tn + h , xn+1 = xn + hf(tn, xn) . (1.48)

We then denote by xh(t) the piecewise linear function which passes through the points
(tn, xn). It is called the Euler polygon and is an approximation to the solution of the
Cauchy problem.

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

0.25

0.5

0.75

1

1.25

Figure 1.5: Euler polygons for x′ = −x2 for h=0.5 and h = 0.25.

Lemma 1.4.2 Let A = {(t, x) ; |t − t0| ≤ a , ‖x − x0‖ ≤ b}, and f : A → Rn be
a continuous function with M = sup(t,x)∈A ‖f(t, x)‖. We set α = min(a, b/M). If
h = ±α/N , N an integer, the Euler Polygon satisfies (t, xh(t)) ∈ A for t ∈ [t0−α, t0+α]
and we have the bound

‖xh(t)− xh(t′)‖ ≤M |t− t′| for t, t′ ∈ [t0 − α, t0 + α] . (1.49)

Proof: Let us consider first the interval [t0, t0 + α] and choose h > 0. We show first,
by induction that (tn, xn) ∈ A for n = 0, 1, · · · , N . We have ‖xn− xn−1‖ ≤ hM and so
‖xn − x0‖ ≤ nhM ≤ αM ≤ b if n ≤ N . Since xh(t) is piecewise linear (t, xh(t)) ∈ A
for any t ∈ [t0, t0 +α]. The estimate (1.49) follows from the fact that the slope of xh(t)
is nowhere bigger than M . On [t0 − α, t0] the argument is similar.

Definition 1.4.3 A family of functions fj : [a, b]→ Rn, j = 1, 2, · · ·, is equicontinuous
if for any ε > 0 there exists δ > 0 such that for, for all j, |t − t′| < δ implies that
‖fj(t)− fj(t′)‖ ≤ ε.

Equicontinuity means that all the functions fj are uniformly continuous and that,
moreover, δ can be chosen to depend only on ε, but not on j. The estimate (1.49)
shows that the family xh(t), with h = α/N , N = 1, 2, · · ·, is equicontinuous.
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Theorem 1.4.4 (Arzelà-Ascoli 1895) Let fj : [a, b]→ Rn be a family of functions
such that

• {fj} is equicontinuous.

• For any t ∈ [a, b], there exists M(t) ∈ R such that supj ‖fj(t)‖ ≤M(t).

Then the family {fj} has a convergent subsequence {gn} which converges uniformly to
a continuous function g on [a, b].

Remark 1.4.5 As we have seen a bounded closed set in C([a, b]) is not always compact.
The Arzelà-Ascoli theorem shows that a bounded set of equicontinuous function is a
compact set in C([a, b]) and thus it can be seen a generalization of Bolzano-Weierstrass
to C([a, b]).

Proof: The subsequence is constructed proof via a trick which is referred to as ”diagonal
subsequence”. The set of rational numbers in [a, b] is countable and we write it as
{t1, t2, t3, · · ·}. Consider the sequence {fj(t1)}, by assumption it is bounded in Rn

and, by Bolzano-Weierstrass, it has a convergent subsequence which we denote by
{f1i(t1)}i≥1 and therefore

f11(t), f12(t), f13(t) · · · converges for t = t1 . (1.50)

Consider next the sequence {f1i(t2)}i≥1. Again, by Bolzano-Weierstrass, this sequence
has a convergent subsequence denoted by {f2i(t2)}i≥1. We have

f21(t), f22(t), f23(t) · · · converges for t = t1, t2 . (1.51)

After n steps we find a sequence {fni(t)}i≥1 of {fj(t)} such that

fn1(t), fn2(t), fn3(t) · · · converges for t = t1, t2, · · · , tn . (1.52)

Next we consider the diagonal sequence gn(t) = fnn(t). This sequence converges for
any tl, since {gn(tl) = fnn(tl)}n≥l is a subsequence of {fln(tl)}n≥l which converges.

By equicontinuity, given ε > 0, there exists δ > 0 such that for all n ≥ 1, |t− t′| < δ
implies that ‖gn(t)− gn(t′)‖ < ε. Let us choose rational points t1, t2, · · · tq−1 such that
a = t0 < t1 < · · · < tq−1 < tq = b and ti+1 − ti < δ. For t ∈ [tl, tl+1] we have

‖gn(t)− gm(t)‖ ≤ ‖gn(t)− gn(tl)‖+ ‖gn(tl)− gm(tl)‖+ ‖gm(t)− gm(tl)‖ . (1.53)

By equicontinuity ‖gn(t) − gn(tl)‖ and ‖gm(t) − gm(tl)‖ are smaller than ε. By the
convergence of {gn(tl)} there exists N(l) such that ‖gn(tl)− gm(tl)‖ ≤ ε if n,m ≥ Nl.
If we choose N = maxlNl we have that ‖gn(t) − gm(t)‖ ≤ 3ε for all t ∈ [a, b] and
n,m ≥ N . This shows that gn(t) converges uniformly to some g(t) which is then
continuous.

From this we obtain



CHAPTER 1. EXISTENCE AND UNIQUENESS 19

Theorem 1.4.6 (Peano 1890) Let A = {(t, x) ; |t− t0| ≤ a , ‖x− x0‖ ≤ b}, f : A→
Rn a continuous function with M = sup(t,x)∈A ‖f(t, x)‖. Set α = min(a, b/M). The
Cauchy problem (1.31) has a solution on [t0 − α, t0 + α].

Proof: Let us consider the Euler polygons with h = α/N , N = 1, 2, · · ·. The sequence is
bounded since ‖xh(t)−x0‖ ≤M |t−t0| ≤Mα and equicontinuous by Lemma 1.4.2. By
Arzelà-Ascoli Theorem, the family xh(t) has a subsequence which converges uniformly
to a continuous function x(t) on [t0 − α, t0 + α]. It remains to show that x(t) is a
solution.

Let t ∈ [t0, t0 +α] and let (tn, xn) the approximation obtained by Euler method for
xh(t). If t ∈ [tl, tl+1] we have

xh(t)− x0 = hf(t0, x0) + hf(t1, x1) + · · ·+ hf(tl−1, xl−1) + (t− tl)f(tl, xl) . (1.54)

Since f(t, x(t)) is a continuous function of t it is Riemann integrable and, using a
Riemann sum with left-end points have∫ t

t0
f(s, x(s)) ds = hf(t0, x(t0)) + hf(t1, x(t1)) + · · ·

· · ·+ hf(tl−1, x(tl−1)) + (t− tl)f(tl, x(tl)) + r(h) , (1.55)

where limh→0 ‖r(h)‖ = 0. By the uniform continuity of f on A and the uniform
convergence of the subsequence of {xh(t)} to x(t) we have that ‖f(t, xh(t)−f(t, x(t))‖ ≤
ε if h is sufficiently small (and h is such that xh belongs to the convergent subsequence).
Using that xh(tj) = xj and subtracting (1.55) from (1.54) we find that

‖xh(t)− x0 −
∫ t

t0
f(s, x(s)) ds‖ ≤ (l + 1)hε+ ‖r(h)‖ ≤ αε+ ‖r(h)‖ (1.56)

which converges to αε as h → 0. Since ε is arbitrary x(t) is a solution of the Cauchy
problem in integral form (1.32).

1.5 Continuation of solutions

So far we only considered local solutions, i.e., solutions which are defined in a neigh-
borhood of (t0, x0). Simple examples shows that the solution x(t) may not exist for
all t, for example the equation x′ = 1 + x2 has solution x(t) = tan(t − c) and this
solution does not exist beyond the interval (c−π/2, c+π/2), and we have x(t)→ ±∞
as t→ c± π/2.

To extend the solution we solve the Cauchy problem locally, say from t0 to t0 + α
and then we can try to continue the solution by solving the Cauchy problem x′ = f(t, x)
with new initial condition x(t0 + α) and find a solution from t0 + α to t0 + α+ α′, and
so on... In order do this we should be able to solve it locally everywhere and we will
therefore assume that f satisfy a local Lipschitz condition.
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Definition 1.5.1 A function f : U → Rn (where U is an open set of R×Rn) satisfies
a local Lipschitz condition if for any (t0, x0) ∈ U there exist a neighborhood V ⊂ U
such that f satisfies a Lipschitz condition on V , see (1.39).

Note that if the function f is of class C1 in U , then it satisfies a local Lipschitz
condition.

Lemma 1.5.2 Let U ⊂ R ×Rn be an open set and let us assume that f : U → Rn

is continuous and satisfies a local Lipschitz condition. Then for any (t0, x0) ∈ U there
exists an open interval Imax = (ω− , ω+) with −∞ ≤ ω− < t0 < ω+ ≤ ∞ such that

• The Cauchy problem x′ = f(t, x), x(t0) = x0 has a unique solution on Imax.

• If y : I → Rn is a solution of x′ = f(t, x), y(t0) = x0, then I ⊂ Imax and y = x|I .

Proof: a) Let x : I → Rn and z : J → Rn be two solutions of the Cauchy problem
with t0 ∈ I, J . Then x(t) = z(t) on I ∩ J . Suppose it is not true, there is point t̄
such that x(t̄) 6= z(t̄). Consider the first point where the solutions separate. The local
existence theorem 1.3.4 shows that it is impossible.

b) Let us define the interval

Imax =
⋃
{I ; I open interval , t0 ∈ I , there exists a solution on I} . (1.57)

This interval is open and we can define the solution on Imax as follows. If t ∈ Imax,
then there exists I where the Cauchy problem has a solution and we can define x(t).
The part (a) shows that x(t) is uniquely defined on Imax.

Theorem 1.5.3 Let U ⊂ R×Rn be an open set and let us assume that f : U → Rn is
continuous and satisfies a local Lipschitz condition. Then every solution of x′ = f(t, x)
has a continuation up to the boundary of U . More precisely, if x : Imax → Rn is
the solution passing through (t0, x0) ∈ U , then for any compact K ⊂ U there exists
t1, t2 ∈ Imax with t1 < t0 < t2 such that (t1, x(t1)) /∈ K, (t2, x(t2)) /∈ K.

Remark 1.5.4 If U = R×Rn, Theorem 1.5.3 means that either

• x(t) exists for all t,

• There exists t∗ such that limt→t∗ ‖x(t)‖ =∞,

The exists globally or the solution ”blows up” at a certain point in time.
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Proof: Let Imax = (ω− , ω+). If ω+ =∞, clearly there exists a point t2 such that t2 > t0
and (t2, x(t2)) /∈ K because K is bounded. If ω+ < ∞, let us assume that there exist
a compact K such that (t, x(t)) ∈ K for any t ∈ (t0, ω+). Since f(t, x) is bounded on
the compact set K, we have, for t, t′ sufficiently close to ω+

‖x(t)− x(t′)‖ =
∥∥∥∥∫ t

t′
f(s, x(s)) dt

∥∥∥∥ ≤M |t− t′| < ε . (1.58)

This shows that limt→ω+ x(t) = x+ exists and (ω+, x+) ∈ K, since K is closed. Theorem
1.3.4 for the Cauchy problem with x(ω+) = x+ implies that there exists a solution in a
neighborhood of ω+. This contradicts the maximality of the interval Imax. For t1 the
argument is similar.

1.6 Global existence

In this section we derive sufficient conditions for global existence of solutions, i.e.,
absence of blow-up for t > t0 or for all t. The following simple lemma and its variants
will be very useful.

Lemma 1.6.1 (Gronwall Lemma) Suppose that g(t) is a continuous function with
g(t) ≥ 0 and that there exits constants a, b > 0 such that

g(t) ≤ a+ b
∫ t

t0
g(s) ds , t ∈ [t0, T ] . (1.59)

Then we have
g(t) ≤ aeb(t−t0) t ∈ [t0, T ] . (1.60)

Proof: Set G(t) = a + b
∫ t

0 g(s) ds. Then G(t) ≥ g(t), G(t) > 0, for t ∈ [t0, T ], and
G′(t) = bg(t). Therefore

G′(t)

G(t)
=

bg(t)

G(t)
≤ bG(t)

G(t)
= b , t ∈ [t0, T ] , (1.61)

or, equivalently,
d

dt
logG(t) ≤ b , t ∈ [t0, T ] , (1.62)

or
logG(t)− logG(0) ≤ b(t− t0) , t ∈ [t0, T ] , (1.63)

or
G(t) ≤ G(0)eb(t−t0) = aeb(t−t0) , t ∈ [t0, T ] , (1.64)

which implies that g(t) ≤ aeb(t−t0), for t ∈ [t0, T ].

The first condition for global existence is rather restrictive, but it has the advantage
of being easy to check.
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Definition 1.6.2 We say that the function f : R × Rn → Rn is linearly bounded if
there exists a constant C such that

‖f(t, x)‖ ≤ C(1 + ‖x‖) , for all (t, x) ∈ R×Rn . (1.65)

Obviously if f(t, x) is bounded on R×Rn, then it is linearly bounded. The functions
x cos(x2), or x/ log(2 + |x|) are examples of linearly bounded function. The function
f(x, y) = (x+ xy, y2)T is not linearly bounded.

Theorem 1.6.3 Let f : R×Rn → Rn be continuous, locally Lipschitz (see Definition
1.5.1) and linearly bounded (see Definition 1.6.2). Then the Cauchy problem x′ =
f(t, x), x(t0) = x0, has a unique solution for all t.

Proof: . Since f is locally Lipschitz, there is a unique local solution x(t). We have the
a-priori bound on solutions

‖x(t)‖ ≤ ‖x0‖+
∫ t

t0
‖f(s, x(s))‖ ds ≤ ‖x0‖+ C

∫ t

t0
(1 + ‖x(s)‖) ds , (1.66)

Using Gronwall Lemma for g(t) = 1 + ‖x(t)‖, we find that

1 + ‖x(t)‖ ≤ (1 + ‖x0‖)eC(t−t0) , or ‖x(t)‖ ≤ ‖x(0)‖eC(t−t0) + (eC(t−t0)− 1) . (1.67)

This shows that the norm of the solution grows at most exponentially fast in time.
From Remark 1.5.4 it follows that the solution does not blow up in finite time.

We formulate additional sufficient conditions for global existence but, for simplicity,
we restrict ourselves to autonomous equations: we consider Cauchy problems of the
form

x′ = f(x) , x(t0) = x0 , (1.68)

where f(t, x) does not depend explicitly on t.

Theorem 1.6.4 (Liapunov functions) Let f : Rn → Rn be locally Lipschitz. Sup-
pose that there exists a function V (x) : Rn → R of class C1 such that

• V (x) ≥ 0 and lim‖x‖→∞ V (x) = ∞.

• 〈∇V (x) , f(x)〉 ≤ a+ bV (x)

Then the Cauchy problem x′ = f(x), x(t0) = x0, has a unique solution for t0 < t < +∞.
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Proof: Since f is locally Lipschitz, there is a unique local solution x(t) for the Cauchy
problem. We have

d

dt
V (x(t)) =

n∑
j=1

∂V

∂xj

dxj
dt

= 〈∇V (x(t)) , f(x(t))〉 ≤ a+ bV (x(t) (1.69)

or, by integrating,

V (x(t)) ≤ V (x(t0)) +
∫ t

t0
(a+ bV (x(s)) ds . (1.70)

Applying Gronwall lemma to g(t) = a+ bV (x(t)) gives the bound

a+ bV (x(t)) ≤ (a+ bV (x(0))) eb(t−t0) . (1.71)

Therefore V (x(t)) remains bounded for all t. Since lim‖x‖→∞ V (x) = ∞, the level sets
of V , V −1(c) are compact for all c and thus ‖x(t)‖ stays finite for all t > t0 too.

Remark 1.6.5 The function V in Theorem 1.6.4 is usually referred to as a Liapunov
function. We will also use similar function later to study the stability of solutions.
Note that there is no general method to construct Liapunov function, it involves some
trial and error and some a-priori knowledge on the equation.

Example 1.6.6 (Gradient systems) Let V : Rn → R be a function of class C2. A
gradient systems is an ODE of the form

x′ = −∇V (x) . (1.72)

(The negative sign is a traditional convention). Note that in dimension n = 1, any
autonomous ODE x′ = f(x) is a gradient system since we can always write V (x) =∫ x
x0
f(y) dy.
Consider the level sets of the function V , V −1(c) = {x ;V (x) = c}. If x ∈ V −1(c)

is a regular point, i.e., if ∇V (x) 6= 0, then, by the implicit function Theorem, locally
near x, V −1(c) is a smooth hypersurface surface of dimension n − 1. For example, if
n = 2, the level sets are smooth curves.

Note that if x is a regular point of the level curve V −1(c), then the solution curve
x(t) is perpendicular to the level surface V −1(c). Indeed let y be a vector which is
tangent to the level surface V −1(c) at the point x. For any curve γ(t) in the level set
V −1(c) with γ(0) = x and γ′(0) = y we have

0 =
d

dt
V (γ(t))|t=0 = 〈∇V (x) , y〉 , (1.73)

and so ∇V (x) is perpendicular to any tangent vector to the level set V −1(c) at all
regular points of V .

We have the following
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Lemma 1.6.7 Let V : Rn → R be a function of class C2 with lim‖x‖→∞ V (x) = +∞.
Then any solution of the gradient system x′ = −∇V (x), x(t0) = x0 exists for all t > t0.

Proof: If x(t) is a solution of (3.107), then we have

d

dt
V (x(t)) = −〈∇V (x(t)) , ∇V (x(t))〉 ≤ 0 . (1.74)

This shows that V is a Liapunov function.

Example 1.6.8 (Hamiltonian systems.) Let x ∈ Rn, y ∈ Rn, and H : Rn×Rn →
R be a function of class C2. The function H(x, y) is called a Hamiltonian function (or
energy function) and the 2n-dimensional ODE

x′ = ∇yH(x, y) , y′ = −∇xH(x, y) . (1.75)

is called the Hamiltonian equation for the Hamiltonian H(x, y). Since H is of class C2,
the vector field f(x, y) = (∇yH(x, y) , −∇yH(x, y))T is locally Lipschitz so that we
have local solutions. Let (x(t), y(t)) be a solution of (1.75). We have then

d

dt
H(x(t), y(t)) = ∇xH · x′ +∇yH · y′(t)

= ∇xH · ∇yH −∇yH · ∇xH = 0 . (1.76)

This means that H is a integral of the motion, for any solution H(p(t), q(t)) = const
and that any solution stays on a level set of the function H. For Hamiltonian equations
this usually referred to as conservation of energy.

Let us assume further that lim‖(x,y)‖→∞H(x, y) = ∞. This means that H(x, y) is
bounded below, i.e., H(x, y) ≥ −c from some c ∈ R and that the level sets {H(x, y) =
c} are closed and bounded hypersurfaces. In this case H(x, y)+c is a Liapunov function
for the ODE (1.75) and the solution exist for all positive and negative times.

Example 1.6.9 (van der Pol equations)The second order equation x′′ = ε(1 −
x2)x′ − x is written as the first order system

x′ = y

y′ = ε(1− x2)y − x (1.77)

and is a perturbation of the harmonic oscillator x′′+x = 0 which is an Hamiltonian sys-
tem with Hamiltonian H(x, y) = x2

2
+ y2

2
(harmonic oscillator). Taking the Hamiltonian

as the Liapunov function we have

〈∇H(y, x) , f(y, x)〉 = ε(1− x2)y2 =

{
≤ 0 if x2 ≥ 1
≤ εy2 if x2 ≤ 1

. (1.78)

Therefore ∇H · f ≤ 2εH and H is a Liapunov function and we obtain global existence
of solutions.
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Figure 1.6: The vector field for the Hamiltonian x4−4x2+y2 and two solutions between
t = 0 and t = 3 with initial conditions (0.5, 1) and (0.5, 2.4)

Another class of systems which have solutions for all times are given by dissipative
systems.

Theorem 1.6.10 (Dissipative systems) Let f : Rn → Rn be locally Lipschitz.
Suppose that there exists v ∈ Rn and positive constants a and b such that

〈f(x) , x− v〉 ≤ a− b‖x‖2 . (1.79)

Then the Cauchy problem x′ = f(x), x(t0) = x0, has a unique solution for t0 < t < +∞.

Proof: Consider the balls B0 = {x ∈ Rn ; ‖x‖2 ≤ a/b} and the Liapunov function

V (x) =
||x− v||2

2
. (1.80)

The condition (1.79) implies that for any solution d
dt
V (x(t)) ≤ 0 outside of the ball B0

and therefore V is a Liapunov function.

Remark 1.6.11 The condition (1.79) means that for the balls B = {x ∈ Rn ; ‖x −
v‖2 ≤ R} with R ≥ ‖v‖+

√
a/b is chosen so large that B0 is contained in the interior

of B, the vector field f points toward the interior of B. This implies that a solution
which starts in B will stay in B forever.

There are many variants to Theorem 1.6.10 (see the exxercises). The basic idea
is to find a family of sets (large balls in Theorem 1.6.10 but the set could have other
shapes) such that, on the boundary of the sets the vector f points inward. This implies
that solutions starting on the boundary will move inward the set. If one proves this
for all sufficiently large sets, then one obtains global existence for all initial data.
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Figure 1.7: The solution for Lorentz equation with σ = 10, r = 28 and b = 8
3

and
initial condition (-40, 40, 25)

Example 1.6.12 The Lorentz equations are given by

x′1 = −σx1 + σx2

x′2 = −x1x3 + rx1 − x2

x′3 = x1x2 − bx3 (1.81)

Despite its apparent simplicity, the Lorentz equations exhibits, for suitable values of
the parameters, a very complex behavior. All solutions are attracted to a compact
invariant set on which the motion is chaotic. Such an invariant set is called a strange
attractor (see Figure 1.7).

We show that the system is dissipative, we take v = (0, 0, γ). Choosing γ = b + r
and using the inequality 2γx3 ≤ γ2 + x2

3, we find

〈f(x) , x− v〉 = −σx2
1 − x2

2 − by2
3 + (σ + r − γ)x1x2 + bγx3

= −σx2
1 − x2

2 − by2
3 + bγx3

≤ −σx2
1 − x2

2 −
b

2
y2

3 + b
γ2

2
. (1.82)

If γ = b + r, then (1.79) is satisfied with α = bγ
2

2
and β = min(σ, 1, b/2) and the

solution of Lorentz systems exists for all t > 0.

1.7 Wellposedness and dynamical systems

For the Cauchy problem x′ = f(t, x), x(t0) = x0, we denote the solution by x(t, t0, x0)
where we explicitly indicate the dependence on the initial time t0 and the initial position
x0.
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Definition 1.7.1 The Cauchy problem x′ = f(t, x), x(t0) = x0 is called locally well-
posed (resp. globally wellposed) if there exists a unique local (resp. global) solution
x(t, t0, x0) which depends continuously of (t0, x0).

Lemma 1.7.2 Let f : U → R ×Rn (U an open set of R ×Rn) be continuous and
satisfy a local Lipschitz condition. Then for any compact K ⊂ U there exists L ≥ 0
such that

‖f(t, y)− f(t, x)‖ ≤ L‖x− y‖ , for all (t, x), (t, y) ∈ K (1.83)

Proof: Let us assume the contrary. Then there exists sequences (tn, xn) and (tn, yn) in
K such that

‖f(tn, xn)− f(tn, yn)‖ > n‖xn − yn‖ . (1.84)

Since f is bounded on K with M = max(t,x)∈K ‖f(t, x)‖, it follows from (1.84) that

‖xn − yn‖ ≤ 2M/n . (1.85)

By Bolzano-Weierstrass, the sequence (tn, xn) has an accumulation point (t, x), and
f(t, x) satisfies a Lipschitz condition in a neighborhood V of (t, x).

The bound (1.85) implies that there are infinitely many indices n such that (tn, xn) ∈
V and (tn, yn) ∈ V . Then (1.84) contradicts the Lipschitz condition on V .

Theorem 1.7.3 Let f : U → R × Rn (U an open set of R × Rn) be continuous
and satisfy a local Lipschitz condition. Then the solution x(t, t0, x0) of the Cauchy
problem x′ = f(t, x), x(t0) = x0 is a continuous function of (t0, x0). Moreover the
function x(t, t0, x0) is a Lipschitz continuous function of x0, i.e., there exists a constant
R = R(t) such that

‖x(t, t0, x0)− x(t, t0, x1)‖ ≤ R‖x0 − x1‖ . (1.86)

Proof: We choose a closed subinterval [a, b] of the maximal interval of existence Imax

with t, t0 ∈ [a, b]. We choose ε small enough such that the tubular neighborhood K
around the solution x(t, t0, x0),

K = {(t, x) ; t ∈ [a, b] , ‖x− x(t, t0, x0)‖ ≤ ε} , (1.87)

is contained in the open set U . By Lemma 1.7.2, f(t, x) satisfies a Lipschitz condition
on K with a Lipschitz constant L. The set V

V =
{

(t1, x1) ; t1 ∈ [a, b] ‖x1 − x(t1, t0, x0)‖ ≤ εe−L(b−a)
}
, (1.88)

is a neighborhood of (t0, x0) which satisfies V ⊂ K ⊂ U . If (t1, x1) ∈ V we have

‖x(t, t1, x1)− x(t, t0, x0)‖ = ‖x(t, t1, x1)− x(t, t1, x(t1, t0, x0))‖

≤ ‖x1 − x(t1, t0, x0)‖+ L
∫ t

t1
‖x(s, t1, x1)− x(s, t1, x(t1, t0, x0))‖ . (1.89)
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From Gronwall lemma we conclude that

‖x(t, t1, x1)− x(t, t0, x0)‖ ≤ eL|t−t1|‖x1 − x(t1, t0, x0)‖ ≤ ε (1.90)

and this concludes the continuity of x(t, t0, x0). To prove the Lipschitz continuity in
x0 one sets t1 = t0 in (1.90) and this prove (1.86) with R = eL|t−t0|.

This theorem shows that the Cauchy problem is locally wellposed, provided f is
continuous and satisfy a local Lipschitz condition. If, in addition, the solutions exist
for all times then the Cauchy problem is globally wellposed.

Let us consider the map φt,t0 : Rn → Rn given by

φt,t0(x0) = x(t, t0, x0) . (1.91)

The map φt,t0 maps the initial position x0 at time t0 to the position at time t, x(t, t0, x0).
By definition the maps φt,t0 satisfy the composition relations

φt+s,t0(x0) = φt+s,t(φt,t0(x0)) . (1.92)

If the ODE is autonomous, i.e., f(x) does not depend explicitly on t we have

Lemma 1.7.4 (Translation property) Suppose that x(t) is a solution of x′ = f(x),
then x(t− t0) is also a solution.

Proof: If x′(t) = f(x(t)), then d
dt
x(t− t0) = x′(t− t0) = f(x(t− t0)).

This implies that, if x(t) = x(t, 0, x0) is the solution of the Cauchy problem x′ =
f(x), x(0) = x0, then x(t − t0) is the solution of the Cauchy problem x′ = f(x),
x(t0) = x0. In other words x(t − t0) = x(t, t0, x0) and so the solution depends only
on t − t0. For autonomous equations we can thus always assume that t0 = 0. In this
case we will denote then the map φt,t0 = φt−t0,0 simply by φt−t0 . The map φt has the
following group properties

• (a) φ0(x) = x.

• (b) φt(φs(x)) = φt+s(x).

• (c) φt(φ−t(x)) = φ−t(φt(x)) = x.

If the solutions exists for all t ∈ R, the collection of maps φt is called the flow of
the differential equations x′ = f(x). Note that Property (c) implies that the map
φt : Rn → Rn is invertible. More generally, a continuous map φ· : R × Rn → Rn

which satisfies Properties (a)-(b)-(c) is called a (continuous time) dynamical system.
If the Cauchy problem is globally wellposed then the maps φt are a continuous flow of
homeomorphisms and we will say that the dynamical system is continuous.
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Remark 1.7.5 If the vector fields f(t, x) are of class Ck then one would expect that
x(t, t0, x0) is also a function of class Ck. We will discuss this in the next chapter.

Remark 1.7.6 Theorem 1.7.3 shows the following: For fixed t, x(t, t0, x0) can be made
arbitrarily close to x(t, t0, x0+ξ) provided ξ is small enough (depending on t!). This does
not mean however that the solutions which start close to each other will remain close
to each other, What we proved is a bound ‖x(t, t0, x0 + ξ)−x(t, t0, x0)‖ ≤ K‖ξ‖eL|t−t0|
which show that two solutions can separate, typically at an exponential rate.

Example 1.7.7 For the Cauchy problem

x′ =

(
−1 0
0 κ

)
, x(0) =

(
1
0

)
(1.93)

the solution is (e−t, 0)T . The solution with initial condition (1, ξ)T is (e−t, ξeκt)T . If
κ ≤ 0 both solutions stay a distance less than |ξ| for all time t ≥ 0, if κ > 0 the solutions
diverge from each other exponentially with time. For given t, we can however make
them arbitrarily close up to time t by choosing ξ small enough, hence the continuity.

1.8 Exercises

1. Determine whether the following sequences of functions are Cauchy sequences
with respect to the uniform norm ‖ · ‖∞ on the given interval I. Determine the
limit fn(x) if it exists.

(a) fn(x) = sin(2πnx) , I = [0, 1]

(b) fn(x) =
xn − 1

xn + 1
, I = [−1, 1].

(c) fn(x) =
1

n2 + x2
, I = [0, 1]

(d) fn(x) =
nx

1 + (nx)2
, I = [0, 1]

2. Show that ‖f‖2 is a norm on C([0, 1]).

3. Prove that all norms on Rn are equivalent by proving that any norm ‖ · ‖ in Rn

is equivalent to the euclidean norm ‖ · ‖2.
Hint: (a) Let ei be the usual vector basis in Rn and write x = x1e1 + · · ·+ xnen
and use the triangle inequality and Cauchy-Schwartz to show that ‖x‖ ≤ C‖x‖2.
(b) Using (a) prove that | ‖x‖ − ‖y‖ | ≤ C‖x− y‖2 and thus the function ‖ · ‖ on
Rn with ‖‖2 is a continuous function.
(c) Consider now the function ‖ · ‖ on the compact set K = {x , ‖x‖2 = 1} and
deduce from this the equivalence of the two norms.
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4. (a) Let f : U → Rn where U ⊂ Rn is an open set and suppose that f satisfies
a Lipschitz condition on U . Show that f is uniformly continuous on U .

(b) Let f : E → Rn where E ⊂ Rn is a compact set. Suppose that f is locally
Lipschitz on E, show that f satisfies a Lipschitz condition on E.

(c) Show that f(x) = 1/x is locally Lipschitz but that it does not satisfy a
Lipschitz condition on (0, 1).

(d) Show that f(x) =
√
|x| is not locally Lipschitz.

(e) Does the Cauchy problem x′ = 1/x, x(0) = a > 0 have a unique solu-
tion? Solve it and determine the maximal interval of existence. What is the
behavior of the solution at the boundary of this interval?

5. (a) Derive the following error estimate for the method of successive approxima-
tions. Let x be a fixed point given by this method. Show that

‖x− xk‖ ≤
α

1− α
‖xk − xk−1‖ , (1.94)

where α is the contraction rate.

(b) Consider the function f(x) = ex/4 on the interval [0, 1]. Show that f has a
fixed point on [0, 1]. Do some iterations and estimate the error rigorously
using (a).

6. Consider the function f : R→ R given by

f(x) =

{
x+ e−x/2 if x ≥ 0
ex/2 if x ≤ 0

. (1.95)

(a) Show that |f(x)− f(y)| < |x− y| for x 6= y.

(b) Show that f does not have a fixed point.

Explain why this does not contradict the Banach fixed point theorem.

7. Consider the IVP
x′ = x3 , x(0) = a . (1.96)

(a) Apply the Picard-Lindelöf iteration to compute the first three iterations
x1(t), x2(t), x3(t).

(b) Find the exact solution and expand it in a Taylor series around t = 0. Show
that the first few terms agrees with the Picard iterates.

(c) How does the number of correct terms grow with iteration?
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8. Apply the Picard-Lindelöf iteration to the Cauchy problem

x′1 = x1 + 2x2 , x1(0) = 0 (1.97)

x′2 = t2 + x1 , x2(0) = 0 (1.98)

Compute the first five terms in the taylor series of the solution.

9. Show that the assumption that ”D is closed” cannot be omitted in general in the
fixed point theorem. Find a set D which is not closed and a map f : D → E
such that f(D) ⊂ D, f is a contraction, but f does not have a fixed point in D.

10. (a) Let I = [t0 − α, t0 + α] and for a positive constant κ define

‖x‖κ = sup
t∈I
‖x(t)‖e−κ|t−t0| .

Show that ‖ · ‖κ defines a norm and that the space

E = {x : I → Rn , x(t) continuous and ‖x‖κ <∞}

is a Banach space.

(b) Consider the IVP x′ = f(t, x), x(t0) = x). Give a proof of Theorem 1.3.4 in
the classnotes by applying the Banach fixed point theorem in the Banach
space E with norm ‖ · ‖κ for a well-chosen κ.

(c) Suppose that f(t, x) satisfy a global Lipschitz condition, i.e., there exists a
positive L > 0 such that

‖f(t, x)−f(t, y)‖ ≤ L‖x−y‖ for all x, y ∈ Rn and for all t ∈ R . (1.99)

Show that the Cauchy problem x′ = f(t, x), x(t0) = x0 has a unique solution
for all t ∈ R. Hint: Use the norm defined in (a).

11. Consider the map T given by

T (f)(x) = sin(2πx) + λ
∫ 1

−1

f(y)

1 + (x− y)2
dy

(a) Show that if f ∈ C([−1, 1],R) then so is T (f).

(b) Find a λ0 such that T is a contraction if |λ| < λ0 and T is not a contraction
if |λ| > λ0. Hint: For the second part find a pair f, g such that ‖T (f) −
T (g)‖∞ > ‖f − g‖∞.
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12. (a) Consider the norm of C([0, a]) given by

‖f‖e = max
0≤t≤a

|f(t)|e−t2 . (1.100)

(Why is it a norm?) Let

Tf(t) =
∫ t

0
sf(s) ds . (1.101)

Show that ‖Tf‖∞ ≤ a2

2
‖f‖∞ and ‖Tf‖e ≤ 1

2
‖f‖e .

(b) Show that the integral equation

x(t) =
1

2
t2 +

∫ t

0
sx(s) ds , t ∈ [0, a] , (1.102)

has exactly one solution. Determine the solution (i) by rewriting the equa-
tion as an initial value problem and solving it, (ii) by using the methods of
successive approximations starting with x0 ≡ 0.

13. Let us consider R2 with the norm ‖x‖ = max{|x1|, |x2|}. Let f ; R2 → R2 be
given by

f(x1, x2) =

(
x2

1 + 2x2
2 + 5 cos(x2)

4x1x2 + 3

)
(1.103)

Let K = {(x1, x2) , |x1| < 1, |x2| ≤ 2}. Find an explicit Lipschitz constant L for
f on K.

14. Let f : R2 → R be of class C1 and satisfy f(0, 0) = 0. Suppose that x(t) is a
solution of the ODE

x′′ = f(x, x′) , (1.104)

which is not identically 0. Show that x(t) has simple zeros. Examples: the
harmonic oscillator x′′ + x = or the mathematical pendulum x′′ + sin(x) = 0.

15. Consider the initial value problem x′ = f(t, x), x(t0) = x0, where f(t, x) is a
continuous function. Show that if the initial value problem has a unique solution
then the Euler polygons xh(t) converge to this solution.

16. Consider the Cauchy problem x′ = f(t, x), x(0) = 0, where

f(t, x) =

 4sign(x)
√
|x| if |x| ≥ t2

4sign(x)
√
|x|+ 4(t− |x|

t
) cos(π log t

log 2
) if |x| < t2

(1.105)

The function f is continuous on R2. Consider the Euler polygons xh(t) with
h = 2−i, i = 1, 2, 3, · · ·. Show that xh(t) does not converge as h → 0, compute
its accumulation points, and show that they are solution of the Cauchy problem.
Hint: the solutions are ±4t2.
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17. Consider the the Cauchy problem x′ = f(t, x), x(0) = 0 where f is given by

f(t, x) =


0 if t ≤ 0, x ∈ R
2t if t > 0, x ≤ 0

2t− 4x
t

if t > 0, 0 ≤ x < t2

−2t if t > 0, t2 ≤ x

(1.106)

(a) Show that f is continuous. What does that imply for the Cauchy problem?

(b) Show that f does not satisfy a Lipschitz condition in any neighborhood of
the origin.

(c) Apply Picard-Lindelöf iteration with x0(t) ≡ 0. Are the accumulation points
solutions?

(d) Show that the Cauchy problem has a unique solution. What is the solution?

This problem shows that existence and uniqueness of the solution does not imply
that the Picard-Lindelöf iteration converges to the unique solution.

18. Consider the Cauchy problem x′ = λx, x(0) = 1, with λ > 0 and t ∈ [0, 1].
Compute the Euler polygons xh(t) with h = 1/n and show that

λ

1 + λh
xh(t) ≤

dxh
dt

(t) ≤ λxh(t) . (1.107)

Deduce from this the classical inequality(
1 +

λ

n

)n
≤ eλ ≤

(
1 +

λ

n

)n+λ

(1.108)

Hint: Use Gronwall Lemma.

19. Let a, b, c, and d be positive constants. Consider the Predator-Prey equation
x′ = x(a − by), y′ = y(cx − d) with positive initial conditions x(t0) > 0 and
y(t0) > 0. Show that the solutions exists for all t and that the solution curves
x(t), y(t) are periodic. Hint: You can use the change of variables p = log(x) and
q = log(y)

20. (a) Show that any second order ODE x′′+ f(x) = 0 can be written as a Hamil-
tonian system for the Hamiltonian function H(x, y) = y2/2 + V (x), where
y = x′ and V (x) =

∫ x
0 f(t)dt

(b) Compute the Hamiltonian function, and it level curves and draw the solu-
tions curves for the following ODE’s

i. x′′ = −ω2x (the harmonic oscillator)
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ii. x′′ = −a sin(x) (the mathematical pendulum: One end A of weightless
rod of length l is attached to a pivot, and a mass m is attached to
the other end B. The system moves in a plane under the influence of
the gravitational force of amplitude mg which acts vertically downward.
Here x(t) is the angle between the vertical and the rod and a = g/l).

iii. mr′′ = −γMm/r2 (Vertical motion of a body of mass m in free fall due
to the gravity of a body of mass M).

Depending on the energy H(x0, y0) of the initial condition discuss in details
the different types of solutions which can occur. Are the solutions bounded
or unbounded? Are there constant solutions or periodic solutions? Do the
solutions converge as t→ ±∞?

21. (a) Consider the Hamiltonian function H(x, y) = y2/2 + V (x). Suppose that
we have initial conditions x(0) = x0 and x′(0) = y0 > 0 with initial energy
E = H(x0, y0). Use the conservation of energy to show the solution x(t) is
given (implicitly) by the formula

t =
∫ x(t)

x0

1√
2(E − V (s))

ds .

(b) Assume that V (x) = V (−x), i.e., V is an even function. Show that if x(t) is
a solution then so are x(c− t) and −x(t). Furthermore show that if x(c) = 0
then x(c+ t) = −x(c− t) and that if x′(d) = 0 then x(d+ t) = x(d− t).

(c) Assume that V (x) = V (−x) and consider periodic solutions. We denote
by R the largest swing, i.e., the maximal positive value of x(t) along the
periodic solution. Using (a) show that the period p of the periodic solution
is given by

p = 4
∫ R

0

1√
2(V (R)− V (s))

ds

Hint: Consider the quarter oscillation starting at the point x(0) = 0 and
y(0) = y0 > 0 and ending at x(T ) = R > 0 and y(T ) = 0. Use also the
symmetry of V and (b).

(d) Use (c) to show the period for the harmonic oscillator is independent of the
energy E.

(e) Use (c) to show that for the mathematical pendulum the period is given by

p =
4√
a

∫ π/2

0

1√
1− k2 sin2(u)

du

where k = sin r/2. This integral is an elliptic integral of the first type. Hint:
Use 1− cos(α) = sin2 α

2
and the substitution sin s/2 = k sinu.
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22. Show that the following ODE’s have global solutions (i.e., defined for all t > t0).

(a)
x′ = 4y3 + 2x
y′ = −4x3 − 2y − cos(x)

.

(b) x′′ + x+ x3 = 0.

(c) x′′ + x′ + x+ x3 = 0.

(d)
x′ = sin(2t2x)x3

1+t2+x2+y2

y′ = x2y
1+x2+y2

.

(e)
x′ = 5x− 2y − y2

y′ = 2y + 6x+ xy − y3 .

23. Prove the following generalizations of Gronwall Lemma.

• Let a > 0 be a positive constant and g(t) and h(t) be nonnegative continuous
functions. Suppose that for any t ∈ [0, T ]

g(t) ≤ a+
∫ t

0
h(s)g(s) ds . (1.109)

Then, for any t ∈ [0, T ]

g(t) ≤ ae
∫ t
0
h(s) ds . (1.110)

• Let f(t) > 0 be a positive function and g(t) and h(t) be nonnegative con-
tinuous functions. Suppose that for any t ∈ [0, T ]

g(t) ≤ f(t) +
∫ t

0
h(s)g(s) ds . (1.111)

Then, for any t ∈ [0, T ]

g(t) ≤ f(t)e
∫ t
0
h(s) ds . (1.112)

24. Consider the FitzHugh-Nagumo equation

x′1 = f1(x1, x2) = g(x1)− x2 ,

x′2 = f2(x1, x2) = σx1 − γx2 , (1.113)

where σ and γ are positive constants and the function g is given by g(x) =
−x(x− 1/2)(x− 1).

(a) In the x1-x2 plane draw the graph of the curves f1(x1, x2) = 0 and f2(x1, x2) =
0.
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(b) Consider the rectangles ABCD whose sides are parallel to the X1 and x2

axis with two opposite corners located on the f2(x1, x2) = 0. Show that if
the rectangle is taken sufficiently large, a solution which start inside the rect-
angle stays inside the rectangle forever. Deduce from this that the equations
for any initial conditions x0 have a unique solutions for all time t > 0.

25. Show that the solutions of

x′1 = x1(3− 4x1 − 2x2) ,

x′2 = x2(4− 2x1 − 3x2) , (1.114)

have a unique solution for all t ≥ 0, for any initial conditions x10 , x20 wich are
nonnegative. Hint: A possibility is to use a similar procedure as in the previous
exercise.

26. Continuous dependence on parameters. Consider the IVP x′ = f(t, x, µ),
x(t0) = x0 where f : V → Rn ( V ⊂ R×Rn ×Rk an open set). We denote by
x(t, µ) the solution of the IVP (we have suppressed the dependence on (t0, x0)).
Let us assume

• f is a continuous function on V .

• f(t, x, c) satisfies a local Lipschitz condition in the following sense: Given
(c0, t0, x0) ∈ V and positive constants a, b, c such that A ≡ {(t, x, µ) ; |t −
t0| ≤ a , ‖x − x0‖ ≤ b , ‖µ − µ0‖ ≤ c} ⊂ V then there exists a constant L
such that ‖f(t, x, µ)− f(t, y, µ)‖ ≤ L‖x− y‖ for all (t, x, µ), (t, y, µ) ∈ A.

Show that x(t, µ) depends continuously on µ for t in some interval J containing
t0.



Chapter 2

Linear Differential Equations

We denote by L(Rn) the set of linear maps A : Rn → Rn which we identify with the
set of n× n matrices A = (aij) with real entries. We write Ax instead of A(x) for the
vector with coefficients (Ax)i =

∑n
j=1 aijxj.

In this chapter we consider linear differential equations, i.e., ODE’s of the form

x′ = A(t)x+ g(t) , (2.1)

where x ∈ Rn, g : I → Rn, and A : I → L(Rn) with I some interval.
The linear ODE is called homogeneous if g(t) ≡ 0, and inhomogeneous otherwise.

If A(t) = A is independent of t and g ≡ 0, the linear ODE x′ = Ax is called a system
with constant coefficients.

2.1 General theory

We discuss first general properties of the differential equations x′ = A(t)x+ g(t).

Theorem 2.1.1 (Existence and uniqueness) Let I = [a, b] be an interval and
suppose that A(t) and g(t) are continuous function on I. Then the Cauchy problem
x′ = A(t)x+ g(t), x(t0) = x0 (with t0 ∈ I, x0 ∈ Rn) has a unique solution on I.

Proof: The function f(t, x) = A(t)x+g(t) is continuous and satisfies a Lipschitz condi-
tion on I×Rn. Therefore the solution is unique wherever it exists. Moreover on I×Rn

we have the bound ‖f(t, x)‖ ≤ a‖x‖+b where a = supt∈I ‖A(t)‖ and b = supt∈I ‖g(t)‖.
Therefore we have the bound ‖x(t)‖ ≤ ‖x0‖+

∫ t
t0

(a‖x(s)‖+b) ds for t0, t ∈ I. Gronwall
lemma implies that ‖x(t)‖ remains bounded if t ∈ I.

Remark 2.1.2 If A(t) and g(t) are continuous on R then, applying Theorem 2.1.1 to
[−T, T ] for arbitrary T shows that the solution exists for all t ∈ R.
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Theorem 2.1.3 (Superposition principle) Let I be an interval and let A(t), g1(t),
g2(t) be continuous function on I. If

x1 : I → Rn is a solution of x′ = A(t)x+ g1(t) ,

x2 : I → Rn is a solution of x′ = A(t)x+ g2(t) ,

then

x(t) := c1x1(t) + c2x2(t) : I → Rn is a solution of x′ = A(t)x+ (c1g1 + c2g2(t)) .

Proof: : This a simple exercise.

This theorem has very important consequences.

Homogeneous equations. Let us consider homogeneous Cauchy problems x′ =
A(t)x, x(t0) = x0 and let denote its solutions x(t, t0, x0) to indicate explicitly the
dependence on the initial data.
(a) The solution x(t, t0, x0) depends linearly on the initial condition x0, i.e.,

x(t, t0, c1x0 + c2y0) = c1x(t, t0, x0) + c2x(t, t0, y0) . (2.2)

This follows by noting that, by linearity, both sides are solutions of the ODE and have
the same initial conditions. The uniqueness of the solutions implies then the equality.
As a consequence there exists a linear map R(t, t0) : Rn → Rn such that

R(t, t0)x0 = x(t, t0, x0) . (2.3)

It maps the initial condition x0 at time t0 to the position at time t. The linear map
R(t, t0) is called the resolvent of the differential equation x′ = A(t)x. The i-th column
of R(t, t0) is a solution x′ = A(t)x with initial condition x0 = (0, · · · , 0, 1, 0, · · · , 0)T

where 1 is in i-th position.

(b) If x0 = 0, then x(t) ≡ 0 for all t ∈ I (The point 0 is called a critical point). As a
consequence if x(t) is a solution and it vanishes at some point t, then it is identically
0.

(c) The set of solutions of x′ = A(t)x form a vector space. We call a set of solutions
x1(t), · · · , xk(t) linearly dependent if there exists constants c1, · · · , ck, with at least one
ci 6= 0, such that

c1x1(t) + · · ·+ ckxk(t) = 0 . (2.4)

Note that by (b), if (2.4) holds at one point t, it holds at any point t. Therefore if the
initial condition x1(t0), · · ·xk(t0) are linearly dependent, then the corresponding solu-
tions are linearly dependent for any t. The k solutions are called linearly independent
if they are not linearly dependent, i.e., c1x1(t) + · · · + ckxk(t) = 0 implies that that
c1 = · · · = ck = 0.
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(d) From (c) it follows that there exist exactly n linearly independent solutions,
x1, · · · , xn. Every such set of n linearly independent solutions is called a fundamental
system of solutions. Any solution x of x′ = A(t)x can be written, in a unique way, as
a linear combination

x(t) = a1x1(t) + · · ·+ anxn(t) . (2.5)

(e) A system of n linearly independent solutions can be arranged in a matrix Φ(t) =
(x1(t), · · · , xn(t)). In this notation the i-th column of Φ(t) is the column vector xi(t).
The matrix Φ(t) is called a fundamental matrix or a Wronskian for x′ = A(t)x. It
satisfies the matrix differential equation

d

dt
Φ(t) = A(t)Φ(t) . (2.6)

(f) If Φ(t) is a fundamental matrix then the resolvent is given by

R(t, t0) = Φ(t)Φ(t0)−1 . (2.7)

Indeed x(t) = Φ(t)Φ(t0)−1x0 satisfies x′ = A(t)x (because of (2.6)) and x(t0) = x0.

Theorem 2.1.4 (Properties of the resolvent) Let A(t) be continuous on the in-
terval I. Then the resolvent of x′ = A(t)x satisfies

1. ∂
∂t
R(t, t0) = A(t)R(t, t0).

2. R(t0, t0) = I (the identity matrix).

3. R(t, t0) = R(t, t1)R(t1, t0).

4. R(t, t0) is invertible and R(t, t0)−1 = R(t0, t).

Proof: We have ∂
∂t
R(t, t0)x0 = ∂

∂t
x(t, t0, x0) = A(t)R(t, t0)x0 and R(t0, t0)x0 = x0

for any x0 ∈ Rn. This proves 1. and 2. Item 3 simply says that x(t, t0, x0) =
x(t, t1, x(t1, t0, x0)). Item 4. follows from 2. and 3. by setting t = t0.

Example 2.1.5 The harmonic oscillator x′′ + κx = 0 can be written with x1 = x and
x2 = x′ as (

x1

x2

)′
=

(
0 1
−κ 0

)(
x1

x2

)
. (2.8)

One can find easily two linearly independent solutions, namely(
cos(
√
κt+ φ)

−
√
κ sin(

√
κt+ φ)

)
and

(
sin(
√
κt+ φ)√

κ cos(
√
κt

)
(2.9)
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By definition, the resolvent is the fundamental solution (x1(t), x2(t)) with x1(t) =
(1, 0)T and x2(t0) = (0, 1)T so that we have

R(t, t0) =

(
cos(
√
κ(t− t0)) 1√

κ
sin(
√
κ(t− t0))

−
√
κ sin(

√
κ(t− t0)) cos(

√
κ(t− t0))

)
. (2.10)

Note that the relation R(t, t0) = R(t, s)R(s, t0) is simply the addition formula for sine
and cosine.

Theorem 2.1.6 (Liouville) Let A(t) be continuous on the interval I and let Φ(t) be
a fundamental matrix of x′ = A(t)x. Then

det Φ(t) = det Φ(t0) exp
(∫ t

t0
traceA(s) ds

)
, (2.11)

where traceA(t) := a11(t) + · · ·+ ann(t).

Proof: Let Φ(t) = (φij(t))
n
i,j=1. From linear algebra we know that det(A) is a multilinear

function of the rows of A. It follows that

d

dt
det Φ(t) =

n∑
i=1

detDi(t) where Di(t) =



φ11(t) · · · φ1n(t)
...

...
φ′i1(t) · · · φ′in(t)

...
...

φn1(t) · · · φnn(t)

 . (2.12)

The matrix Di(t) is obtained from Φ(t) by replacing the i-th line by its derivative. We
have Φ′(t) = A(t)Φ(t), i.e., φ′ij(t) =

∑n
k=1 aik(t)φkj(t). Using the multilinearity of the

determinant we find

d

dt
det Φ(t) =

n∑
i=1

n∑
k=1

aik(t) det



φ11(t) · · · φ1n(t)
...

...
φk1(t) · · · φkn(t)

...
...

φn1(t) · · · φnn(t)

←− i− th line

=

(
n∑
i=1

aii(t)

)
det Φ(t) . (2.13)

This is a scalar differential which can be solved by separation of variables and gives
(2.11).
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Remark 2.1.7 The Liouville theorem has the following useful interpretation. If V =
(v1, · · · , vn) is a matrix whose columns are the vectors v1, · · · , vn, then | detV | is the
volume of the parallelepiped spanned by v1, · · · , vn. Using detA−1 = 1/ detA, Liouville
Theorem is equivalent to

detR(t, t0) = exp
(∫ t

t0
traceA(s) ds

)
. (2.14)

If, at time t0 we start with a set of initial conditions B of volume, say, 1 (e.g. a unit
cube), at time t the set B is mapped to a set a parallelepiped R(t, t0)B of volume

exp
(∫ t
t0

traceA(s) ds
)
.

In particular, if trA(t) ≡ 0, then the flow defined by the equation y′ = A(t)y
preserves volume. We have such a situation in Example 2.1.5, see (2.8).

Inhomogeneous equations. We consider the equation

x′ = A(t)x+ g(t) . (2.15)

Theorem 2.1.8 Let x̄(t) be a fixed solution of the inhomogeneous equation (2.15). If
x(t) is a solution of the homogeneous equation, then x(t) + x̄(t) is a solution of the
homogeneous equation and all solutions of the inhomogeneous equation are obtained in
this way.

Proof: : This is an easy exercise.

If we know how to solve the homogeneous problem, i.e. if we know the resolvent
R(t, t0), our task is then to find just one solution of the inhomogeneous equation. The
following theorem provides an explicit formula for such solution.

Theorem 2.1.9 (Variation of constants or Duhamel’s formula) Let A(t) and
g(t) be continuous on the interval I and let R(t, t0) be the resolvent of the homogeneous
equation x′ = A(t)x. Then the solution of the Cauchy problem x′ = A(t)x + g(t) is
given by

x(t) = R(t, t0)x0 +
∫ t

t0
R(t, s)g(s) ds . (2.16)

Proof: The general solution of the homogeneous equation has the form R(t, t0)c with c ∈
Rn. The idea is to ”vary the constants” and to look for a solution of the inhomogeneous
problem of the form

x(t) = R(t, t0)c(t) . (2.17)
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We must then have, using 1. of Theorem 2.1.4,

x′(t) =
∂

∂t
R′(t, t0)c(t) +R(t, t0)c′(t) = A(t)R(t, t0)c(t) +R(t, t0)c′(t)

= A(t)R(t, t0)c(t) + g(t) . (2.18)

Thus
c′(t) = R(t, t0)−1g(t) = R(t0, t)g(t) , (2.19)

and, integrating, this gives c(t) = x0 +
∫ t
t0
R(t0, s)g(s) ds. Inserting this formula in

(2.17) gives the result.

It should be noted that, in general, the computation of the resolvent for x′ = A(t)x
is not easy and can rarely be done explicitly if A depends on t.

Example 2.1.10 Forced harmonic oscillator We consider the differential equation
x′′ + x = f(t), or equivalently the first order system x′ = y, y′ = −x − f(t). The
resolvent is given by (2.10). The solution of the above system with initial conditions
(x(0), y(0))T = (x0, y0)T is(

x(t)
y(t)

)
= R(t)

(
x0

y0

)
+
∫ t

0

(
f(s) sin(t− s)
f(s) cos(t− s)

)
ds , (2.20)

so that

x(t) = cos(t)x0 + sin(t)y0 +
∫ t

0
f(s) sin(t− s) ds . (2.21)

For example if f(t) = cos(
√
κt) we find

x(t) = cos(t)x0 + sin(t)y0 +

{ √
κ

1−κ(cos(t)− cos(
√
κt)) κ 6= 1

1
2
t sin(t) k = 1

. (2.22)

The motion is quasi-periodic if
√
κ is irrational, periodic if

√
κ is rational (and 6= 1),

and the solution grows as t→∞ if κ = 1 (resonance).

2.2 The exponential of a linear map A

In this section we let K = R or C. We equip Kn with a norm, for example,

‖x‖1 =
n∑
i=1

|xi| , ‖x‖2 =

(
n∑
i=1

|xi|2
)1/2

, ‖x‖∞ = max
1≤i≤n

|xi| , (2.23)

then Kn is a Banach space. All norms being equivalent on Kn the choice is a matter
of convenience.
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A n× n matrix A = (aij) with aij ∈ K defines a linear map A : Kn → Kn and we
denote by L(Kn) the set of all linear maps from Kn into Kn. The set L(Kn) is also
a vector space, of (real or complex) dimension n2 and is a Banach space if equipped
with a norm. In addition to being a vector space L(Kn) is naturally equipped with
multiplication (composition of linear maps) and it is natural and advantageous to equip
L(Kn) with a norm which is compatible with matrix multiplication.

Definition 2.2.1 For A ∈ L(Kn) we define

‖A‖ = sup
‖x‖≤1

‖Ax‖ = sup
x 6=0

‖Ax‖
‖x‖

. (2.24)

The number ‖A‖ is called the operator norm of A.

This definition means that ‖A‖ is the smallest real number R such that

‖Ax‖ ≤ R ‖x‖ , for all x ∈ Kn , (2.25)

and we have the bound
‖Ax‖ ≤ ‖A‖‖x‖ . (2.26)

The properties N1 and N2 are easily verified. For the triangle inequality, we have
for A,B ∈ L(Kn)

‖(A+B)x‖ ≤ ‖Ax‖+ ‖Bx‖ ≤ (‖A‖+ ‖B‖) ‖x‖ . (2.27)

Dividing by ‖x‖ and taking the supremum over all x 6= 0 one obtains the triangle
inequality ‖A+B‖ ≤ ‖A‖+ ‖B‖.

Simple but important properties of ‖A‖ are summarized in

Lemma 2.2.2 Let I ∈ L(Kn) be the identity map (Ix = x) and let A,B ∈ L(Kn).
Then we have

1. ‖I‖ = 1.

2. ‖AB‖ ≤ ‖A‖ ‖B‖. .

3. ‖An‖ ≤ ‖A‖n.

Proof: 1. is immediate, 3. is a consequence of 2. To estimate ‖AB‖, we apply twice
(2.25)

‖(AB)x‖ ≤ ‖A‖ ‖Bx‖ ≤ ‖A‖‖B‖‖x‖ . (2.28)

To conclude we divide by ‖x‖ and take the supremum over x 6= 0.
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Example 2.2.3 Let us denote by ‖A‖p, p = 0, 1,∞ the operator norm of A acting on
Kn with the norm ‖x‖p, p = 0, 1,∞ (see (2.23)). Then we have the formulas

‖A‖1 = max
1≤j≤n

n∑
i=1

|aij| ,

‖A‖∞ = max
1≤i≤n

n∑
j=1

|aij| ,

‖A‖2 =
√

biggest eigenvalue of A∗A . (2.29)

Proof: For ‖x‖1 we have

‖Ax‖1 =
n∑
i=1

∣∣∣∣∣∣
m∑
j=1

aijxj

∣∣∣∣∣∣ ≤
n∑
i=1

m∑
j=1

|aij| |xj| =
n∑
j=1

|xj|
(

m∑
i=1

|aij|
)
≤ max

1≤j≤n

(
m∑
i=1

|aij|
)
‖x‖1 ,

(2.30)
and therefore ‖A‖1 ≤ maxj(

∑m
i=1 |aij|). To prove the equality, choose j0 such that∑m

i=1 |aij0| = maxj(
∑m
i=1 |aij|) and then set x = (0, · · · , 1, · · · , 0)T where the 1 is in

position j0. Then for such x we have equality in (2.30). This shows that ‖A‖1 cannot
be smaller than maxj(

∑m
i=1 |aij|). The formula for ‖A‖∞ is proved similarly.

For the norm ‖ · ‖2 we have ‖x‖2
2 = 〈x, x〉 where 〈x, y〉 =

∑n
i=1 x̄iyi is the usual

scalar product. Note that the matrix A∗A is symmetric and positive semi-definite
(〈x,A∗Ax〉 = ‖Ax‖2 ≥ 0). From linear algebra we know that A∗A can be diagonalized
and there exists an unitary matrix U (U∗U = 1) such that U∗A∗AU = diag(λ1, · · · , λn),
where λi ≥ 0. With x = Uy (‖x‖2 = ‖y‖2) we obtain

‖Ax‖2
2 = 〈x,A∗Ax〉 = 〈y, U∗A∗AUy〉 =

n∑
i=1

λi|yi|2 ≤ λmax‖y‖2
2 = ‖x‖2

2 . (2.31)

This implies that ‖A‖2 ≤
√
λmax. To show equality choose x to be an eigenvector for

λmax.

In order to solve linear ODE’s we will need to construct the exponential of a n× n
matrix A which we will denote by eA. We will define it using the series representation
of the exponential function. If {Ck} is a sequence with Ck ∈ L(Kn) we define infinite
series as usual: C =

∑∞
k=0 Ck if and only if the partial sums converge. The convergence

of C =
∑∞
k=0 Ck is equivalent to the convergence of the n2 series of the coefficients∑

k c
(k)
ij . We say that the series converges absolutely if the real series

∑ ‖Ck‖ converges.

For any norm, there exist positive constants a and A such that a
∑
ij |c

(k)
ij | ≤ ‖Ck‖ ≤

A
∑
ij |c

(k)
ij | and therefore absolute convergence of the series is equivalent to the absolute

convergence of the n2 series
∑
k c

(k)
ij .
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Proposition 2.2.4 Let A ∈ L(Kn). Then

1. For any T > 0, the series

etA :=
∞∑
j=0

tjAj

j!
, (2.32)

converges absolutely and uniformly on [−T, T ], etA is a continuous function of t
and we have ∥∥∥etA∥∥∥ ≤ et‖A‖ . (2.33)

2. The map t→ etA is everywhere differentiable and

d

dt
etA = AetA = etAA . (2.34)

Proof: Item 1. For t ∈ [−T, T ] we have∥∥∥∥∥tjAjj!
∥∥∥∥∥ ≤ |t|j‖A‖jj!

≤ T j‖A‖j

j!
. (2.35)

Let us denote by Sn(t) the partial sum
∑n
j=0

tjAj

j!
. Then, for m > n, we have

‖Sn(t)− Sm(t)‖ ≤
m∑

j=n+1

T j‖A‖j

j!
≤

∞∑
j=n+1

T j‖A‖j

j!
. (2.36)

This implies that Sn(t) is a Cauchy sequence in L(Kn), uniformly in t ∈ [−T, T ], since
the right side (2.36) is the remainder term for the series eT‖A‖. The function Sn(t) are
continuous function, they converge uniformly on [−T, T ] and L(Kn) is a Banach space
so that the limit etA, exists and is continuous. The bound (2.33) follows immediately
from (2.35).

Item 2. The partial sum Sn(t) are differentiable function of t with

S ′n(t) = ASn−1(t) = Sn−1(t)A . (2.37)

The same argument as in 1. shows that S ′n(t) converges uniformly on [−T, T ]. Since
both Sn(t) and S ′n(t) converge uniformly we can exchange limit and differentiation. If
we take the limit n→∞ in (2.37) we obtain (2.34).

We summarize some properties of the exponential in

Proposition 2.2.5 Let A,B,C ∈ L(Kn). Then

1. If AB = BA then eA+B = eAeB.

2. If C is invertible then eC
−1AC = C−1eAC .
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3. If A = diag(λ1, · · · , λn) then eA = diag(eλ1 , · · · , eλn).

Proof: If AB = BA then, using the binomial theorem, we obtain

(A+B)n =
n∑
k=0

(
n

k

)
AkBn−k (2.38)

and therefore

eA+B =
∞∑
n=0

(A+B)n

n!
=

∞∑
n=0

n∑
k=0

AkBn−k

k!(n− k)!
=

∞∑
p=0

Ap

p!

∞∑
q=0

Bq

q!
= eAeB , (2.39)

and this proves 1.
It is easy to see that C−1AkC = (C−1AC)

k
. Dividing by k!, summing and taking

the limit proves 2. If A = diag(λ1, · · · , λn), then Ak = diag(λk1, · · · , λkn) and this proves
3.

As a consequence we obtain

Corollary 2.2.6 Let A ∈ L(Kn). Then

1. (etA)−1 = e−tA.

2. e(t+s)A = etAesA.

3. eλI+A = eλeA.

Example 2.2.7 Let us compute the exponential of some simple matrices.

1. Let J =

(
0 1
−1 0

)
then J2 = −I and thus by induction J2n = (−1)nI and

J2n+1 = (−1)nJ . We obtain

etJ =
∑
n≥0

(−1)nt2n

2n!
I +

∑
n≥0

(−1)nt2n+1

(2n+ 1)!
A =

(
cos(t) sin(t)
− sin(t) cos(t)

)
(2.40)

2. Let A =

(
0 b
−b 0

)
then using 1. we have etA = etbJ =

(
cos(bt) sin(bt)
− sin(bt) cos(bt)

)
.

3. Let B =

(
a b
−b a

)
then we have A = aI + bJ and I and J commute. Thus

etB = etaIetbJ =

(
eat cos(bt) eat sin(bt)
−eat sin(bt) eat cos(bt)

)
. (2.41)
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4. Let C =

(
0 ε
0 0

)
then C2 = 0 and thus etC =

(
1 εt
0 1

)

5. Let D be the n× n matrix with entries ε on the off-diagonal and ) otherwise

D =



0 ε
0 ε

. . .

0 ε
0

 , (2.42)

We have

D2 =



0 0 ε2

0 0 ε2

. . . . . . . . .

0 0 ε2

0 0
0


· · ·Dn−1 =



0 0 0 · · · εn−1

0 0 0
. . . . . . . . .

...
0 0 0

0 0
0


.

(2.43)
and Dl = 0 for l ≥ n. Then we have

etD = 1 + tD +
t2D2

2!
+ · · ·+ tn−1Dn−1

(n− 1)!

=



1 εt ε2t2

2
· · · εn−1tn−1

(n−1)!

1 εt · · · εn−2tn−2

(n−2)!

. . . . . .
...

1 εt ε2t2

2

1 εt
1


(2.44)

6. Let

E =



λ ε
λ ε

. . .

λ ε
λ

 ,

then

etE = et(λI+D) = eλtetD (2.45)
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=



eλt εteλt ε2t2

2
eλt · · · εn−1tn−1

(n−1)!
eλt

eλt εteλt · · · εn−2tn−2

(n−2)!
eλt

. . . . . .
...

eλt εteλt ε2t2

2
eλt

eλt εteλt

eλt


(2.46)

2.3 Linear systems with constant coefficients

From Proposition 2.2.4 one obtains immediately

Theorem 2.3.1 The resolvent of the linear equation with constant coefficients x′ = Ax
is given by

R(t, t0) = e(t−t0)A . (2.47)

Proof: From proposition 2.2.4 we have

d

dt
e(t−t0)A = Ae(t−t0)A . (2.48)

Thus the j-th column of e(t−t0)A is the solution of the Cauchy problem x′ = Ax,
x(t0) = (0, · · · , 0, 1, 0, · · ·)T where the 1 is in j-th position.

Solving x′ = Ax is thus reduced to the problem of computing the exponential of a
matrix A, see Example 2.2.7 for some simple examples. We will present here a general
technique to compute such an exponential.

In the scalar case the ODE x′ = λx has the general solution X(t) = Ceλt. With
this intuition in mind let us try to find solutions of the form x(t) = eλtv where v is
a nonzero vector. Inserting into the equation we deduce that eλtv is a solution if and
only if

Av = λv , (2.49)

i.e., λ is an eigenvalue of Aand v is an eigenvector for the eigenvalue λ.
If A is real and λ is a complex eigenvalue with eigenvector w = u+ iv then we have

Aw̄ = λ̄w̄, i.e. the eigenvalues and eigenvectors occur in complex conjugate pairs.

Proposition 2.3.2 Let A be a real n×n matrix and consider the differential equation
x′ = Ax.

1. The function t 7→ eλtv is a real solution if and only if λ ∈ R, v ∈ Rn, and
Av = λv.
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2. If w 6= 0 is an eigenvector for A with eigenvalue λ = α + iβ with β 6= 0 then the
imaginary part of w = u+ iv is not zero. In this case there are two real solutions

t 7→ eαt [(cos βt)u− (sin βt)v] , (2.50)

t 7→ eαt [(sin βt)u+ (cos βt)v] . (2.51)

Proof: If Av = λv then eλtv is a solution. If λ = α + iβ, then since A is real an
eigenvector w = u + iv has nonzero imaginary part. The real and imaginary parts of
the corresponding solution

eλt(u+ iv) = e(α+iβ)t(u+ iv) ,

= eαt(cos βt+ i sin βt)(u+ iv) ,

= eαt [(cos βt)u− (sin βt)v] + ieαt [(sin βt)u+ (cos βt)v] . (2.52)

are real solutions. In order to show that these real solutions are linearly independent,
let us suppose that some linear combinations of them vanishes identically. Evaluating
at t = 0 and t = π/2β yields

c1u+ c2v = 0 c2u− c1v = 0 , (2.53)

This implies that (c2
1 + c2

2)w = 0 and thus c1 = c2 = 0. This proves item 2. The proof
of item 1. is easy.

The problem now is reduced to the question whether we can find n linearly inde-
pendent eigenvectors of A. As we know from linear algebra this is not always possible,
for example the matrix

A =

 λ 1 0
0 λ 1
0 0 λ

 (2.54)

has 1 as its only eigenavalue and (1, 0, 0)T as its only eigenvector.

Definition 2.3.3 Let Λ be an eigenvalue of A then we define

(i) The eigenvalue λ of A has an algebraic multiplicity equal to l if λ is a zero of order
l of the charateristic polynomial det(A− λI).

(ii) The eigenvalue λ of A has a geometric multiplicity equal to k if k is the di-
mension of the subspace spanned by the eigenvectors of A for the eigenvalue λ, i.e.
k = dim(ker(A− λI)).

The algebraic multiplicity of λ for the matrix A given by (2.54) is 3 but its algebraic
multiplicity is 1.
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Definition 2.3.4 The matrix A is called semi-simple or diagonalizable if for each eigen-
value λ algebraic and geometric multiplicity coincide.

In this case it is, in principle, easy to compute eAt, we have

Proposition 2.3.5 Let A be a semi-simple n×n matrix (real or complex) with eigen-
values λ1, · · · , λn repeated according to their algebraic multplicity then there exists a
basis v1, · · · vn of Cn where vi is an eigenvectors of A for the eigenvalue Λi. Let

P = (v1, · · · , vn) (2.55)

be the matrix whose ith column is given by the vector vi. Then

eAt = P


eλ1t 0

. . .

0 eλnt

P−1 . (2.56)

Proof: We have

AP = (Av1, · · · , Avn) = (λ1v1, · · · , λnvn) = (v1, · · · , vn)


λ1 0

. . .

0 λn

 , (2.57)

i.e., D ≡ P−1AP is a diagonal matrix whose entries are the eigenvalues of A. Then
the resolvent eAt for x′ = Ax is given by

eAt = PP−1eAtPP−1 = PeP
−1APtP−1 = P


eλ1t 0

. . .

0 eλnt

P−1 . (2.58)

Remark 2.3.6 The change of variable y = P−1x transform the system x′ = Ax into
a system of decoupled equations. Indeed we have y′ = P−1x′ = P−1Ax == Dy where
D is diagonal. Thus we have n equations y′j = λjyj whose solutions eλjtvj form a
fundamental matrix for y′ = Dy.

Example 2.3.7

x′1 = x1 − 2x2

x′2 = 2x1 − x3

x′3 = 4x1 − 2x2 − x3

, A =

 1 −2 0
2 0 −1
4 −2 −1

 . (2.59)
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The eigenvalues are the root of det(A− λI) = 2− λ− λ3 = (1− λ)(λ2 + λ + 2). The
eigenvalues are λ1,2 = −1/2± i

√
7/2, and λ3 = 1. The eigenvectors are computed to be

v1,2 = (3/2± i
√

7/2, 2, 4)T and v3 = (1, 0, 2)T and B = (v1, v2, v3). Three real linearly
independent solutions are given by

et

 1
0
2

 (2.60)

e−t/2

cos(
√

7t/2)

 3/2
2
4

− sin(
√

7t/2)


√

7/2
0
0


 (2.61)

e−t/2

sin(
√

7t/2)

 3/2
2
4

+ cos(
√

7t/2)


√

7/2
0
0


 (2.62)

Suppose that A is not semi-simple, i.e., if, for at least one eigenvalue, the geometric
multiplicity is smaller than the algebraic multiplicity. One way to solve the system
is to transform A into a simpler form, for example in a triangular form or in Jordan
normal form, i.e., one finds an invertible T such that T−1AT has such form (see the
exercises for a proof than any matrix can be transformed into triangular form). With
the transformation x = Ty and x′ = Ty′ the ODE x′ = Ax becomes y′ = Sy. For
example if S has a triangular form we have the system

y′1 = s11y1 + s12y2 + · · · + s1nyn
y′2 = s22y2 + · · · + s2nyn
...

...
y′n = snnyn

(2.63)

One can then solve the system iteratively: one solves first the equation for yn, then the
one for yn−1, and so on up to the equation for y1 (see the example below). Finally one
obtains x = Ty.

Example 2.3.8 Consider the system of equations

x′1 = −3x1 + 2x2 + 5x3

x′2 = + x2 − x3

x′3 = 2x3

, A =

 −3 2 5
0 1 −1
0 0 2

 . (2.64)

with initial conditions (x1(0), x2(0), x3(0)) = (x10, x20, x30). The third equations has
solution x3(t) = e2tx30. Inserting into the second equations gives the inhomogeneous
equation x′2 = x2 − e2tx30 and is solved using Duhamel’s formula

x2(t) = etx20 −
∫ t

0
et−se2sx30 = etx20 + (et − e2t)x30 . (2.65)
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Inserting the solutions x2(t) and x3(t) into the first equations gives the equation x′1 =
−3x1 + 2etx20 + (2et + 3e2t)x30. Again with Duhamel’s formula one finds

x1(t) = e−3tx10 + 2(et − e−3t)x20 + (2et + 3e2t − 5e−3t)x30 . (2.66)

The resolvent is then

R(t, t0) =

 e−3(t−t0) 2e(t−t0) − 2e−3(t−t0) 2e(t−t0) + 3e2(t−t0) − 5e−3(t−t0)

0 e(t−t0) e(t−t0) − e2(t−t0)

0 0 e2(t−t0)

 . (2.67)

The resolvent can be computed easily if S is in Jordan normal form. Let us consider
first the complex Jordan normal form. Then S is block diagonal

S =


J1

J2

. . .

Jk

 (2.68)

where each Jordan block Ji has the form

Ji =



λi 1
λi 1

. . . . . .

λi 1
λi

 (2.69)

Since S is block diagonal we have

etS =


etJ1

. . .

etJk

 , (2.70)

so that it is enough to compute etJ where J is a Jordan block. This has been computed
in Example 2.2.7 5, and 6.

Example 2.3.9 The system of equations

x′1 = −2x1 + x2

x′2 = + −2x2

x′3 = 2x3

, (2.71)

is already in Jordan normal form and its resolvent is

etS =

 e−2t te−2t 0
0 e−2t 0
0 0 e2t

 . (2.72)
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There is also a real Jordan normal form if A is a real matrix. If λ = α + iβ and
λ̄ = α− iβ are a pair complex eigenvalues then S has the form (2.68) where the block
corresponding to the pair λ, λ̄ is given by

J =



R I
R I

. . . . . .

R I
R

 =



R 0
R 0

. . . . . .

R 0
R

 +



0 I
0 I

. . . . . .

0 I
0


≡ T + M

where I is a 2× 2 identity matrix and R has the form

R =

(
α −β
β α

)
. (2.73)

The exponential of R is given by eRt = eαt
(

cos βt − sin βt
sin βt cos βt

)
. Noting that T com-

mute with M we have that eJt = eTteMt and this can be computed easily.
We will not discuss in detail here the algorithm used to put the matrix in Jordan

normal form, since this is not necessary to compute the resolvent eAt. We will use a
slightly simpler algorithm to compute eAt. It is based on a fundamental result of linear
algebra which we quote here without proof.

Definition 2.3.10 Let λ be an eigenvalue of A. The generalized eigenspace of λ con-
sists of the subspace

Eλ = {v ; (A− λI)kv = 0 , for some k ≥ 1} (2.74)

The elements of the generalized eigenspace are called generalized eigenvectors
Note that if A is semi-simple the generalized eigenspace are obtained by taking only

k = 1 and thus consist only of eigenvectors.
We will need the following simple result

Lemma 2.3.11 The generalized eigenspace Eλ is invariant under A.

Proof: If v ∈ Eλ then (A− λI)kv = 0. Then

(A− λI)kAv = (A− λI)kAv − λ(A− λI)kv = (A− λ)(A− λI)kv = 0 (2.75)

and thus Tv ∈ Eλ.
We have the fundamental result
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Theorem 2.3.12 Let A be a n × n matrix. Then there exists a basis of Cn which
consists of generalized eigenvectors, i.e.,

Cn =
⊕

λ eigenvalues

Eλ (2.76)

Using this we will show that any matrix A can be decomposed into a semi-simple
part and a nilpotent part. An example of nilpotent matrix is given in Example 2.2.7.

Definition 2.3.13 A matrix N is said to be nilpotent with nilpotency k if Nk = 0 but
Nk−1 6= 0

Proposition 2.3.14 Let A be a n× n matrix, then there exists a decomposition

A = S +N (2.77)

where A is semi-simple, N is nilpotent and commute with A and with nilpotency no
larger than the maximum of the algebraic multiplicities of the eigenvalues.

Proof: Let v1, · · · , vn be a basis consisting of generalized eigenvectors and set P =
(v1, · · · , vn) be the matrix whose ith column is vi. Let Λ = diag(λ1, · · · , λn) be the
diagonal matrix where λi = λ if vi ∈ Eλ. Then we define

S ≡ PΛP−1 , N ≡ A− S . (2.78)

This provides a decomposition S = A+N .
By construction S is semi-simple and has the same eigenvalues as A with the same

algebraic multiplicities.
Note that SN − NS = S(A − S) − (A − S)S = SA − AS and so it is enough to

show that S commutes with A. Let v ∈ EΛ then Sv = λv. Moreover AV ∈ Eλ by
Lemma 2.3.11 and thus Av is an eigenvector for S. So we have

(SA− AS)v = SAv − Aλv = (S − λI)Av = 0 . (2.79)

By Theorem 2.3.12 any v ∈ Cn can be written as a sum of generalized eigenvectors
and thus

(SA− AS)v = 0 . (2.80)

for any v ∈ Cn so SA− AS = 0 and so SN −NS = 0.
Finally we show that N is nilpotent. Let choose m to be larger than the largest

algebraic multiplicity of the eigenvalues of A. If v ∈ Eλ we have Sv = λv and thus
using that S commute with A we obtain

Nmv = (A−S)mv = (A−S)m−1(A−λI)v = (A−λI)(A−S)m−1 = (A−λI)mv = 0 .
(2.81)
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Since any v can be written as a sum of generalized eigenvectors we obtain Nmv = 0
for any v ∈ Cn and so Nm = 0.

This concludes the proof of Proposition 2.3.14.

Note that Proposition 2.3.14 provides a algorithm to compute etA.

Example 2.3.15 Let x′ = Ax with

A =

 −2 −1 −2
−2 −2 −2

2 1 2

 . (2.82)

We have det(A − λI)λ2(λ + 2) and so λ = 0 has algebraic multiplicity 2 and λ = −2
has algebraic multiplcity 1. The vector (1, 2,−1)T is an eigenvector for −2. We have

(A− 0I)2 = A2 =

 2 2 2
4 4 4
−2 −2 −2

 (2.83)

and so we can choose (1, 0,−1)T and (0, 1,−1)T has generalized eigenvectors. We
obtain

P =

 1 1 0
2 0 1
−1 −1 −1

 , P−1 =
1

2

 1 1 1
1 −1 −1
−2 0 −2

 (2.84)

and

Λ =

 −2 0 0
0 0 0
0 0 0

 , S = PΛP−1 =

 −1 −1 −1
−2 −2 −2

1 1 1

 (2.85)

N = A− S =

 −1 0 −1
0 0 0
1 0 1

 . (2.86)

Finally we compute the exponential by

etA = PetΛP−1(I + tN) =
1

2

 e−2t + 1− 2t e−2t − 1 e−2t − 1− 2t
2e−2t − 2 2e−2t 2e−2t − 2

−e−2t + 1 + 2t −e−2t + 1 −e−2t + 3 + 2t

 (2.87)

A simple but important consequence of this decomposition is the following

Proposition 2.3.16 If A is a real n×n matrix, then etA is a matrix whose components
are sums of terms of the form p(t)eαt sin βt and p(t)eαt cos βt where α are real numbers
such that λ = α + iβ is an eigenvalue of A and p(t) is a polynomial of degree at most
n− 1.
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2.4 Stability of linear systems

For the ODE, x′ = f(t, x) we say that x0 is a critical point if f(t, x0) = 0 for all t. This
implies that the constant solution x(t) = x0 is a solution of the Cauchy problem with
x(t0) = x0. Critical points are also called equilibrium points.

For a linear system with constant coefficients, i.e., f(x) = Ax, x0 = 0 is always
critical point and it is the only critical point if det(A) 6= 0. If det(A) = 0, then 0 is an
eigenvalue and any point in the eigenspace of the eigenvalue 0 is a critical point.

We define next the concept of stability of a solution

Definition 2.4.1 Let f : R × Rn → Rn be continuous and locally Lipschitz. Let
x(t, t0, x) be the solution of the Cauchy problem x′ = f(t, x), x(t0) = x0 which we
assume to exist for all times t > t0.

1. The solution x(t, t0, x0) is stable (in the sense of Liapunov) if for any ε > 0,
there exists δ > 0 such that for all ξ with ‖ξ‖ ≤ δ we have

‖x(t, t0, x0 + ξ)− x(t, t0, x0)‖ ≤ ε for all t ≥ t0 . (2.88)

2. The solution x(t, t0, x0) is asymptotically stable if it is stable and there exists
δ > 0 such that hat for all ξ with ‖ξ‖ ≤ δ we have

lim
t→∞
‖x(t, t0, x0 + ξ)− x(t, t0, x0)‖ = 0 . (2.89)

3. The solution x(t, t0, x0) is unstable if it is not stable.

If a is a critical point, we will say the critical point a is stable or unstable if the
solution x(t) ≡ a is stable or unstable.

Example 2.4.2 The solution x(t) = 0 of x′ = λx is asymptotically stable of λ < 0,
stable if λ = 0, unstable if λ > 0.

Example 2.4.3 The solutions of the equation x′′+ x = 0 are stable (but not asymp-
totically stable). The general solution is (a cos(t) + b sin(t),−a sin(t) + b cos(t)) is a
periodic solution of period 2π on the circle of radius a2 + b2. Two solutions starting at
nearby points (x1, y1) and (x0, y0) will remain close forever.

Example 2.4.4 The solution x(t, 0, x0) = x0

1−x0t
of x′ = x2 is asymptotically stable for

x0 < 0 but unstable for x0 ≥ 0.

Example 2.4.5 For the ODE x′ = x2 − 1, there are two critical points 0 and 1. The
solution x(t) = 0 is unstable and the solution x(t) = 1 is stable.
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For a linear homogeneous equation x′ = A(t)x we have x(t, t0, x0 +ξ)−x(t, t0, x0) =
R(t, t0)ξ = x(t, t0, ξ) − x(t, t0, 0) and so it suffices to study the stability of the crit-
ical point 0. For a linear inhomogeneous equation x′ = A(t)x + f(t), the difference
x(t, t0, x0 + ξ)− x(t, t0, x0) is again equal to R(t, t0)ξ where R(t, t0) is the resolvent of
the homogeneous equation x′ = A(t)x and thus the stability properties of a solution
x(t) of the inhomogeneous problem are the same as the stability of the trivial solution
of the homogeneous problem. Therefore, in the case of linear differential equations, all
the solutions have the same stability properties and one can talk about the stability of
the differential equation.

As we have seen in Section 2.3, the solutions of linear systems with constant co-
efficients are determined by the eigenvalues, and the generalized eigenvectors of the
matrix A. We define the stable, unstable and center subspaces, denoted respectively by
Es, Eu, and Ec and defined by

Es =
⊕

λ : Reλ<0

Ei , (2.90)

Eu =
⊕

λ : Reλ>0

Ei , (2.91)

Ec =
⊕

λ : Reλ=0

Ei . (2.92)

(2.93)

By Lemma 2.3.11 amd Theorem 2.3.12 the generalized eigenspaces span the whole
space and are invariant under A and thus also under etA. So we have

Rn = Es ⊕ Eu ⊕ Ec , (2.94)

and
eAtE# = E# , for all t ∈ R , # = s, u, c . (2.95)

From the proposition 2.3.16 we obtain

Theorem 2.4.6 Let x′ = Ax be a linear system with constant coefficients x′ = Ax,
and let λ1, · · · , λk be the eigenvalues of A.
(a) The critical point 0 is asymptotically stable if and only if all the eigenvalues of A
have a negative real part: Reλi < 0 for i = 1, · · · , k, i.e., if Es = Rn.
(b) The critical point 0 is stable if and only

1. All the eigenvalues have a nonpositive real part Reλi ≤ 0 for i = 1, · · · , k, i.e.,
Es ⊕ Ec = Rn.

2. If Reλi = 0 the Jordan blocks have dimension 1.
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Proof: If Es = Rn then any solutions has components which are linear combina-
tions of terms of the form tkeαt sin(bt) and tkeαt cos(bt) with a < 0. In particular
since limt→∞ t

keαt sin(bt) = 0 we see that every solution goes to 0. This implies that
limt→∞ ‖etA‖ = 0 and so 0 is asymptotically stable.

If If Es ⊗ Ec = Rn then any solutions tkeαt sin(bt) and tkeαt cos(bt) with a ≤ 0.
If Ec is non trivial there will be some terms with a = 0 and those terms will remain
bounded only if there are no polynomial factors tk,in those terms, i.e., only if the
restriction of A to Ec is semisimple. In this case we have then ‖eAt‖ ≤ K and thus 0
is stable. If the restriction of A to Ec has a non-trivial nilpotent there will be terms
which diverge as t→∞ and 0 is not stable.

If some eigenvalue λ has a positive real part, then there exists solutions x(t) with
‖x(t)‖ → ∞ as t→∞. In this case 0 is unstable.

The qualitative behavior of solutions of linear systems with constant coefficients is
as follows

• If x ∈ Es then x(t) = eAtx satisfies limt→∞ x(t) = 0 and limt→−∞ ‖x(t)‖ =∞.

• If x ∈ Eu then x(t) = eAtx satisfies limt→∞ ‖x(t)‖ =∞ and limt→−∞ x(t) = 0.

• If x ∈ Ec then x(t) either stays bounded for all t ∈ R or limt→±∞ ‖x(t)‖ =∞.

We illustrate the behavior of solutions for linear 2 dimensional systems with con-
stant coefficients in the following figures. In figure 2.1 we show the 2 stable linear
systems (Es = R2) with distinct eigenvalues and Jordan normal forms(

α −β
β α

)
, α < 0 ,

(
λ1 0
0 λ2

)
, λ1 < 0, λ2 < 0 .

and in figure 2.2 the 2 stable linear systems (Es = R2) with one eigenvalue and Jordan
normal forms (

λ 0
0 λ

)
, λ < 0 ,

(
λ 1
0 λ

)
, λ < 0 .

In figure 2.3 we show 2 unstable linear systems (Eu = R2) with corresponding
Jordan normal forms(

α −β
β α

)
, α > 0 ,

(
λ1 0
0 λ2

)
, λ1 > 0, λ2 > 0 .

and in figure 2.4 the 2 unstable linear systems (Es = R2) with one eigenvalue and
Jordan normal forms (

λ 0
0 λ

)
, λ > 0 ,

(
λ 1
0 λ

)
, λ > 0 .
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In figure 2.5 we show a center (stable but not asymptotically stable) and an hyper-
bolic linear system in R2 (unstable) with corresponding Jordan normal forms(

0 −β
β 0

)
, α > 0 ,

(
λ1 0
0 λ2

)
, λ1 < 0 < λ2 .
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Figure 2.1: Stable linear systems with Es = R2: stable spiral and stable focus with
two distinct eigenvalues, stable focus with a nontrivial Jordan block
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Figure 2.2: Stable linear systems with Es = R2 with two identical eigenvalues: geo-
metric multiplicity two and one.

If A(t) depends on t, in general it is not enough to look at the eigenvalues of A.
One can construct examples of matrices A(t) whose eigenvalues are negative but for
which 0 is unstable (see homework). One needs stronger condition. As an example we
prove
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Figure 2.3: Unstable linear systems with Eu = R2: unstable spiral and unstable focus
with two distinct eigenvalues
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Figure 2.4: Unstable linear systems with Es = R2 with two identical eigenvalues:
geometric multiplicity two and one.
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Figure 2.5: A linear hyperbolic system with Eu⊕Es = R2 and a center with Ec = R2.
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Theorem 2.4.7 Let A(t) be symmetric, i.e., A∗(t) = A(t) and continuous on [t0,∞).
If the eigenvalues λi(t) of A(t) satisfy λi(t) ≤ α for t ∈ [t0,∞), then the solution x(t)
of x′ = A(t)x satisfy

‖x(t)‖2 ≤ eα(t−t0)‖x(t0)‖2 , t > t0 . (2.96)

In particular, if α ≤ 0, then 0 is stable and if α < 0 then 0 is asymptotically stable.

Proof: Since A(t) is symmetric, its eigenvalues are real and it is diagonalizable with
an orthogonal matrix: there exists a matrix Q(t) with QT (t) = Q−1(t)) such that
QT (t)A(t)Q(t) = diag(λ1(t), · · · , λn(t)). We show that, for all v and all t > t0 we have

〈v , Av〉 ≤ α〈v , v〉 . (2.97)

We set v = Qw and then we have 〈v , v〉 = 〈w , w〉 and

〈v , Av〉 = 〈w , QTAQw〉 ≤ α〈w , w〉 = α〈v , v〉 . (2.98)

For a solution x(t) of x′ = A(t)x we obtain

d

dt
‖x(t)‖2

2 = 2〈x(t) , A(t)x(t)〉 ≤ 2α‖x(t)‖2 . (2.99)

Integrating gives

‖x(t)‖2
2 ≤ ‖x(t0)‖2

2 + 2α
∫ t

t0
‖x(s)‖2

2 ds , (2.100)

and therefore, by Gronwall Lemma,

‖x(t)‖2
2 ≤ ‖x(t0)‖2

2 e
2α(t−t0) . (2.101)

2.5 Floquet theory

In this section we consider periodic A(t), i.e., there exists p > 0 such that A(t + p) =
A(t) for all t ∈ R. Such equation can be reduced, at least in principle, to the case of
constants coefficients and is this reduction goes under the name of Floquet theory.

As a preliminary we need to define the logarithm of matrix. For this it is necessary
to consider complex-matrix since the logarithm of a real matrix will be, in general,
complex.

Proposition 2.5.1 (Logarithm of a matrix) Let C be an invertible matrix, then
there exists a (complex) matrix R such that

C = eR . (2.102)
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Proof: We will use the decomposition of C = S + N into a semi-simple (i.e., diag-
onalizable) matrix S and a nilpotent matrix N (i.e., Nk = 0 for some k ≥ 1) with
SN = NS.
(a) Let us first consider the case C = S, i.e., C is semi-simple. Since S is invertible
and semi-simple there exists P such that S = PΛP−1 with Λ = diag(λ1, · · · , λn) and
λk 6= 0 for all k. We set

T = PLP−1 , L = diag(log λ1, · · · , log λn) . (2.103)

Then we have
eT = ePLP

−1

= PeLP−1 = PΛP−1 = S . (2.104)

(b) To treat the general case C = S +N we note that S is invertible if and only if C
is invertible (they have the same eigenvalues) and if SN = NS then S−1N = NS−1.
Then we have

C = S +N = S(I + S−1N) (2.105)

and S−1N is nilpotent and commute with S.
Recall the power series

log(1 + t) = t− t2

2
+
t3

3
− · · · =

∞∑
j=1

(−1)j+1tj

j
, for |t| < 1 (2.106)

and that the formal rearrangement of power series

∞∑
n=0

 ∞∑
j=1

(−1)j+1tj

j

n 1

n!
= 1 + t (2.107)

is valid for |t| ≤ 1 (this is simply a complicated way to write the identity elog(1+t) = 1+t).
Let us define now

R = T +Q (2.108)

where T is defined as in (a) and

Q =
∞∑
j=1

(−1)j+1(S−1N)j

j
. (2.109)

Since S−1N is nilpotent the series defining Q is actually a finite sum and we do need
to worry about convergence. From the formal rearrangement (2.107) we conclude that

eQ = (I + λ−1N) . (2.110)

Finally since T and Q commute we obtain

eR = eT eQ = S(I + λ−1N) = C , (2.111)

and this concludes the proof of Proposition 2.5.1.
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Theorem 2.5.2 (Floquet) Let A(t) be a continuous periodic function of period p.
Then any fundamental matrix Φ(t) for x′ = A(t)x has a representation of the form

Φ(t) = P (t)eRt , P (t+ p) = P (t) , (2.112)

where R is a constant matrix.

Remark 2.5.3 The theorem 2.5.2 provieds us the form of the solutions. If x0 is an
eigenvector of R for the eigenvalue λ, then the solution x(t) has the form z(t)eλt, where
z(t) = P (t)x0 is periodic with period p. More generally, by the discussion in Section
2.3, a general solution will have components which is a linear combination of terms of
the form α(t)tkeλt, where α(t) is a vector periodic in t.

Note, in particular, that there exists periodic solutions of period p whenever 0 is
an eigenvalue of R.

Proof of Theorem 2.5.2: (a) We note first that if Φ1(t) and Φ2(t) are two fundamental
matrices, then there exists an invertible matrix C such that

Φ1(t) = Φ2(t)C . (2.113)

This follows from the fact that

R(t, t0) = Φ1(t)Φ−1
1 (t0) = Φ2(t)Φ−1

2 (t0) , (2.114)

i.e.,
Φ1(t) = Φ2(t)Φ−1

2 (t0)Φ1(t0) . (2.115)

(b) If x(t) is a solution of x′ = A(t)x, then one verifies easily that y(t) = x(t+p) is also
a solution. Therefore if Φ(t) is a fundamental matrix, then Ψ(t) = Φ(t + p) is also a
fundamental matrix. By (a) and Proposition 2.5.1, there exists a matrix R such that

Φ(t+ p) = Φ(t)epR . (2.116)

We now define
P (t) ≡ Φ(t)e−tR (2.117)

and P (t) is periodic of period p since

P (t+ p) = Φ(t+ p)e−(t+p)R = Φ(t)epRe−(t+p)R = P (t) . (2.118)

This concludes the proof.

The matrix C = epR is called the transition matrix and the eigenvalues eigenvalues,
λi, of C = epR are called the Floquet multipliers. The matrix C depends on the choice
of the fundamental matrix Φ(t), however the eigenvalues do not (see exercises).

The eigenvalues of R, µi are given by λi = epµi are called the characteristic expo-
nents. They are unique, up to a multiple of 2πi/p.
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Remark 2.5.4 For the equation x′ = A(t)x, let us consider the transformation

x(t) = P (t)y(t) (2.119)

where P (t) is the periodic matrix given by Floquet theorem. We obtain

x′(t) = P ′(t)y(t) + P (t)y′(t) = A(t)P (t)y(t) . (2.120)

On the other hand P (t) = Φ(t)e−Rt, so that

P ′(t) = Φ′(t)e−Rt − Φ(t)e−RtR = A(t)P (t)− P (t)R . (2.121)

Thus we find
y′(t) = Ry(t) . (2.122)

The transformation x = P (t)y reduces the linear equation with periodic coefficients
x′ = A(t)x to the system with constant coefficients y′ = By. Nevertheless there are,
in general, no methods available to compute P (t) or the Floquet multipliers. Each
equation has to be studied for itself and entire books are devoted to quite simple
looking equations. The Floquet theory is however very useful to study the stability of
periodic solutions, as we shall see later.

Example 2.5.5 Let us consider the equation x′′+b(t)x′+a(t) = 0, where a(t) and b(t)
are periodic functions. For the fundamental solution Φ(t) = R(t, 0) we have Φ(0) = I
and so by Floquet Theorem

Φ(p) = C = epR =

(
x1(p) x2(p)
x′1(p) x′2(p)

)
(2.123)

The Floquet multipliers are given by the solutions of

λ2 + αλ+ β = 0 , (2.124)

where

α = −x1(p)−x′2(p) , β = det(C) = det(R(p, 0)) = e
∫ p
0

trA(s) ds = e−
∫ p
0
b(s) ds (2.125)

In the special case where b(s) ≡ 0, then the equation is λ2 + αλ + 1 = 0. We have
then
(i) If −2 < α < 2 then the Floquet multipliers λ and λ̄ are complex conjugate with
modulus 1 and therefore the solutions are bounded for all t > 0.
(ii) If α > 2 or α < −2, at least one eigenvalue of C has modulus greater than 1 and
there exists solutions such that |x(t)|2 + |x′(t)|2 goes to infinity as t goes to infinity.
(iii) If α = −2, then λ = 1 is the eigenvalue of C and therefore there exists a periodic
solution of period p. If α = 2 then λ = −1 is the eigenvalue of C and therefore there
exists a periodic solution of period 2p.
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2.6 Linearization

Let us consider the solution x(t, t0, x0) of the Cauchy problem x′ = f(t, x), x(t0) = x0.
Let ξ ∈ Rn and let us now consider the solution x(t, t0, x0 + ξ). As we have seen in
Section 1.7 the function ξ 7→ x(t, t0, x0 + ξ) is continuous, in fact Lipschitz continuous,
provided f is continuous and satisfy a Lipschitz condition. If we assume f to be of
class C1, it is natural to ask whether the map ξ 7→ x(t, t0, x0 + ξ) is of class C1? If this
is the case we have the Taylor expansion

x(t, t0, x0 + ξ) = x(t, t0, x0) +
∂x

∂x0

(t, t0, x0)ξ + o(‖ξ‖) , (2.126)

where o(‖ξ‖) stands for a function with lim‖ξ‖→0 o(‖ξ‖)/‖ξ‖ = 0. The right hand
side of (2.126) without the o(‖ξ‖) term is called the linearization around the solution
x(t, t0, x0).

To obtain an idea of the form of the derivative ∂x
∂x0

(t, t0, x0) we write the Cauchy
problem as

∂x

∂t
(t, t0, x0) = f(t, x(t, t0, x0)) , x(t0, t0, x0) = x0 , (2.127)

and differentiate formally with respect to x0. Exchanging the derivatives with respect
to t and x0 we find

∂

∂t

∂x

∂x0

(t, t0, x0) =
∂f

∂x
(t, x(t, t0, x0))

∂x

∂x0

(t, t0, x0) ,
∂x

∂x0

(t0, t0, x0) = I . (2.128)

This formal calculation shows that the n × n matrix ∂x
∂x0

(t, t0, x0) is a solution of the
linear equation

Ψ′ =
∂f

∂x
(t, x(t, t0, x0))Ψ , Ψ(t0) = I . (2.129)

This equation is called the variational equation for the Cauchy problem x′ = f(t, x),
x(t0) = x0. It is a linear equation of the form y′ = A(t; t0, x0)y, where the matrix A
depends on the parameters (t0, x0). The resolvent also depends on this parameters and
let us denote it by R(t, s; t0, x0). The formal calculation shows that

∂x

∂x0

(t, t0, x0) = R(t, t0; t0, x0) . (2.130)

Before we prove that this formal computation is actually correct let us consider a
number of important special cases and example

Example 2.6.1 (Linearization around equilibrium solutions)Let us assume that
the ODE is autonomous, f(t, x) = f(x) with f of class C1 and that a is a critical point,
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i.e., f(a) = 0. The constant solution x(t, 0, a) = a is a solution. The variational
equation is then

Ψ′ =
df

dx
(a)Ψ , Ψ(0) = I , (2.131)

whose solution is etA where A = df
dx

(a). Therefore, for small ξ, we have

x(t, 0, a+ ξ) = a+ etAξ + o(‖ξ‖) . (2.132)

Example 2.6.2 Consider the mathematical pendulum x′′ + sin(x) = 0 or

x′ = y ,

y′ = − sin(x) . (2.133)

There are two equilibrium solution a = (π, 0)T and b = (0, 0)T (the first component
modulo 2π). The linearization around a and b gives, for small ξ,

z(t, 0, (π, 0)T + ξ) ≈
(
π
0

)
+ eAtξ , A =

(
0 1
1 0

)
, (2.134)

where A has eigenvalues ±1 and

z(t, 0, ξ) ≈
(

0
0

)
+ eBtξ , B =

(
0 1
−1 0

)
(2.135)

where B has eigenvalues ±i.

Example 2.6.3 (Linearization around a periodic solution) Let us assume that
the nonlinear equation x′ = f(x) has a periodic solution x(t, 0, x0) = φ(t). If we
linearize around this periodic solution the variational equation is given by

x′ =
df

dx
(φ(t))x . (2.136)

which is a linear equation with periodic coefficients that we can analyze using Floquet
theory of Section 2.5.

An important fact is the following. If φ(t) is aperiodic solution then φ′(t) is a
solution of the variational equation (2.136). Indeed we have

φ′′(t) =
d

dt
f(φ(t)) =

df

dx
(φ(t))φ′(t) . (2.137)

In particular, in two dimensions, if φ(t) is known explicitly, this can be used to solve
the variational equation, using D’Alembert reduction method (see exercises).
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Example 2.6.4 The second order equation x′′+f(x)x′+ g(x) = 0 has, under suitable
conditions (see Chapter 4) a periodic solution φ(t). In this case the variational equation
is given by

x′ = y ,

y′ = − (f(φ(t))φ′(t) + g′(φ(t)))x− f(φ(t))y . (2.138)

and has the form x′′ + b(t)x′ + a(t) = 0, where a(t) and b(t) are periodic functions.

Example 2.6.5 The system

x′ = −y + x(1− x2 − y2) , (2.139)

y′ = x+ y(1− x2 − y2) , (2.140)

z′ = z . (2.141)

has a periodic orbit in the x, y plane given by (cos(t), sin(t), 0)T . This can be verified
by direct computation or be deduced by choosing cylindrical coordinates (r, θ, z) and
showing that the system (2.185) is equivalent to

r′ = r(1− r2) , (2.142)

θ′ = 1, (2.143)

z′ = z . (2.144)

The linearization around the periodic orbit gives the variational equation

Ψ′ =

 −2 cos2(t) −1− 2 cos(t) sin(t) 0
1− 2 cos(t) sin(t) −2 sin2(t) 0

0 0 1

Ψ (2.145)

Using the fact that φ′(t) = (− sin(t), cos(t), 0) is a solution, one can compute the
solution of the variational equation (see exercises).

Theorem 2.6.6 Let U ⊂ R×Rn be an open set, f : U → Rn be continuous. Assume
that ∂f

∂x
(t, x) exists and is continuous on U . Then the solution x(t, t0, x0) of x′ = f(x),

x(t0) = x0 is continuously differentiable with respect to x0 and its derivative ∂x
∂x0

(t, t0, x0)
is a solution of the variational equation

Ψ′ =
∂f

∂x
(t, x(t, t0, x0))Ψ , Ψ(t0) = I . (2.146)

Proof: For given (t, t0, x0) let us choose [a, b] ⊂ Imax such that t, t0 ∈ (a, b). Let ξ ∈ Rn,
we need to show that for fixed (t, t0, x0),

x(t, t0, x0 + ξ)− x(t, t0, x0)−R(t, t0; t0, x0)ξ = o(‖ξ‖) , (2.147)
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where o(‖ξ‖)/‖ξ‖ → 0 as ξ → 0. The integral equations for x(t, t0, x0 + ξ), x(t, t0, x0)
and R(t, t0; t0, x0)ξ are respectively

x(t, t0, x0 + ξ) = x0 + ξ +
∫ t

t0
f(s, x(s, t0, x0 + ξ)) ds

x(t, t0, x0) = x0 +
∫ t

t0
f(s, x(s, t0, x0)) ds

R(t, t0; t0, x0)ξ = ξ +
∫ t

t0

∂f

∂x
(s, x(s, t0, x0))R(s, t0; t0, x0)ξ ds (2.148)

By Theorem 1.7.3, there exists a constant D such that ‖x(s, t0, x0 + ξ)−x(s, t0, x0)‖ ≤
D‖ξ‖ for t0 ≤ s ≤ t provided ‖ξ‖ is small enough and thus we have

o(‖x(s, t0, x0 + ξ)− x(s, t0, x0)‖) = o(‖ξ‖) . (2.149)

We use the Taylor approximation

f(s, z)− f(s, y)− ∂f

∂x
(s, y)(z − y) = o(‖z − y‖) , (2.150)

and we can take the right hand side to be uniform in (s, y) in any compact set K
since f is of class C1 and will apply it to z = x(s, t0, x0 + ξ) and y = x(s, t0, x0) with
t0 ≤ s ≤ t.

Using these estimates with the integral equations we obtain that

‖x(t, t0, x0 + ξ)− x(t, t0, x0)−R(t, t0; t0, x0)ξ‖

≤
∫ t

t0

∂f

∂x
(s, x(s, t0, x0))(x(s, t0, x0 + ξ)− x(s, t0, x0)−R(s, t0; t0, x0)ξ) ds

+
∫ t

t0
o(‖x(s, t0, x0 + ξ)− x(s, t0, x0)‖) ds .

≤ C
∫ t

t0
‖x(s, t0, x0 + ξ)− x(s, t0, x0)−R(s, t0; t0, x0)ξ‖ ds+ (b− a)o(‖ξ‖) ,

where C = sups∈[a,b]

{∥∥∥∂f
∂x

(s, x(s, t0, x0))
∥∥∥}. By Gronwall Lemma we conclude that

‖x(t, t0, x0+ξ)−x(t, t0, x0)−R(t, t0; t0, x0)ξ‖ ≤ (b−a)eC(b−a)o(‖ξ‖) = o(‖ξ‖) , (2.151)

and this shows that the derivative exists and satisfies the variational equation. It re-
mains to show that the derivative ∂x

∂x0
(t, t0, x0) is a continuous function. We cannot

apply Theorem 1.7.3 directly, since (t0, x0) are not the initial conditions for the varia-
tional equation, but are parameters of the equation. We will show this in Lemma 2.6.7.



CHAPTER 2. LINEAR DIFFERENTIAL EQUATIONS 69

Lemma 2.6.7 Let I is an open interval and V an open set in Rq. Assume that A(t; c)
is continuous on I × V . Then the resolvent R(t, t0; c) for the differential equation
x′ = A(t; c)x is a continuous function of c.

Proof: The proof is a special case of the continuous dependence of solutions on param-
eters (see exercises).

Note that if the ODE is autonomous we obtain

Corollary 2.6.8 Let f : Rn → Rn be of class C1 and let us assume that the solutions
of x′ = f(x) exist for all time. Then, for any t, the maps φt : Rn → Rn are of class
C1 and so φt defines a C1 dynamical system, i.e. a group of diffeomorphisms.

We discuss next the smooth dependence with respect to parameters and with re-
spect to t0. Let us consider a Cauchy problem x′ = f(t, x, c) where f : U → Rn is
differentiable with respect to x and c (U is an open set of R×Rn×Rq). The solution
is denoted x(t, t0, x0, c)

In order to study the differentiability with respect to the parameters c we consider
the extended system(

x
c

)′
=

(
f(t, x, c)

0

)
,

(
x
c

)
(t0) =

(
x0

c

)
(2.152)

If we set z = (x, c)T and F (t, z) = (f(t, x, c), 0)T , then this system becomes z′ = F (t, z),
z(0) = (x0, c)

T and c appears only in the initial condition. Therefore we can apply
Theorem 2.6.6. The function z(t, t0, z0) is continuously differentiable with respect to
z0 = (x0, c) and therefore x(t, t0, x0, c) is continuously differentiable with respect to c.
By deriving the equation

∂x

∂t
(t, t0, x0, c) = f(t, x(t, t0, x0, c), c) , x(t0, t0, x0, c) = x0 (2.153)

with respect to c we find a linear inhomogeneous equation for Ψ(t) = ∂x
∂c

(t, t0, x0, c):

Ψ′ =
∂f

∂x
(t, x(t, t0, x0, c), c)Ψ +

∂f

∂c
(t, x(t, t0, x0, c), c) , Ψ(0) = 0 . (2.154)

Example 2.6.9 The solution of the problem

x′ = f(t, x) + εg(t, x) , x(t0) = x0 . (2.155)

is given, for small |ε| by x(t, ε) = x0(t) + εx1(t) + o(ε) where

x′0(t) = f(t, x0(t)) , x(t) = x0 ,

x′1(t) =
∂f

∂x
(t, x0(t))x1(t) + g(t, x0(t)) , x1(t) = 0 . (2.156)

If we solve the first equation and find x0(t), the second equation is a linear inhomoge-
neous equation for x1(t)
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Example 2.6.10 Consider the equation x′ + x − εx3 with x(0) = 1. For ε = 0
the solution is x0(t) = e−t. Expanding around this solution we find that x(t) =
x0(t) + εx1(t) + o(ε) where x1(t) is a solution of

x′1 = −x1 + e−3t , x1(0) = 0 (2.157)

so that x(t) = e−t + ε(e−t − 1
2
e−3t) + o(ε).

Let us assume that f(t, x) is continuously differentiable with respect to t and x.
Let us consider the extended system(

x
t

)′
=

(
f(t, x)

1

)
,

(
x
t

)
(t0) =

(
x0

t0

)
(2.158)

If we set z = (x, t)T and F (z) = (f(t, x), 1)T , then this system becomes z′ = F (z),
z(t0) = (x0, t0)T and the dependence on t0 can be studied as the dependence on x0.
By Theorem 2.6.6, the solution x(t, t0, x0) is continuously differentiable with respect to
t0. Differentiating the equation ∂x

∂t
(t, t0, x0) = f(t, x(t, t0, x0)) with x(t0, t0, x0, ) = x0

with respect to t0, one finds a linear equation for Ψ(t) = ∂x0

∂t
(t, t0, x0)

Ψ′ =
∂f

∂x
(t, x(t, t0, x0))Ψ , Ψ(t0) = −f(t0, x0) . (2.159)

This is the same differential equation as in the variational equation for ∂x
∂x0

(t, t0, x0)

but with a different initial condition. Since ∂x
∂x0

(t, t0, x0) is the resolvent of (2.159) we
obtain the relation

∂x

∂t0
(t, t0, x0) = − ∂x

∂x0

(t, t0, x0)f(t0, x0) . (2.160)

We can summarize the result of this section by

Theorem 2.6.11 Let U ⊂ R×Rn be an open set and let f : U → Rn be of class Ck,
then the solution x(t, t0, x0) is of class Ck in the variables (t, t0, x0).

Proof: We have proved that x(t, t0, x0) is differentiable with respect to x0 and t0. The
differentiability with respect to t is automatic. We can apply this argument iteratively
to the variational equation and see by recurrence that x is of class Ck.

2.7 Exercises

1. If A ∈ L(Kn) the spectral radius of A, ρ(A), is defined by

ρ(A) = max{|λ| ; λ eigenvalue of A} . (2.161)
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(a) Let

A =

(
0.999 1000

0 0.999

)
(2.162)

Compute the spectral radius of A as well as ‖A‖1, ‖A‖2, and ‖A‖∞. Find a
norm on Rn such that ‖A‖ ≤ 1.

(b) Show that for any norm on Kn we have the inequality ρ(A) ≤ ‖A‖.
(c) Show that if A is symmetric (A∗ = A) then we have the equality ‖A‖2 =

ρ(A).

(d) Show that for any A and any ε > 0, there exists a norm such that ‖A‖ ≤
ρ(A) + ε. Hint: You may use (without proof) the fact that there exists a
matrix D such that DAD−1 is upper triangular (or maybe even in Jordan
normal form). Consider the diagonal matrix S with entries 1, µ−1, · · · , µ1−n.
Set ‖x‖µ = ‖SDx‖ where ‖ · ‖ is any norm on Rn.

2. We have shown in class, using the binomial theorem, that if the matrices A and B
commute then eA+B = eAeB. Here you will show, using a different method based
on uniqueness of solutions for ODE that eA+B = eAeB if and only if AB = BA.

(a) Let F (t) = BetA and G(t) = etAB. Show that if A and B commute then
F (t) and G(t) satisfies the same ODE and thus must be equal.

(b) Let Φ(t) = etAetB and Ψ(t) = et(A+B). Show that if A and B commute, then
Φ(t) and Ψ(t) satisfies the same ODE and thus must be equal.

(c) Show that if Φ(t) = Ψ(t) then A and B commute.

3. Show that if A(t) is antisymmetric, i.e., AT = −A, then the resolvant of x′ =
A(t)x is orthogonal. Hint: Show that the scalar product of two solutions is
constant.

4. (D’Alembert reduction method). Consider the ODE x′ = A(t)x where A(t)
is a n× n matrix and assume that we know one non-trivial solution x(t). Show
that one can reduce the equation x′ = A(t)x to the problem z′ = B(t)z where
z ∈ Rn−1 and B(t) is a (n−1)× (n−1) matrix. Hint: Without loss of generality
you may assume that the nth component of x(t), xn(t) 6= 0. Look for solutions
of the form y(t) = φ(t)x(t) + z(t), where φ(t) is a scalar function and z has the
form z = (z1, · · · , zn−1, 0)T .

5. (a) Using the previous problem, compute the resolvent R(t, 1) of

x′ =

(
1
t
−1

1
t2

2
t

)
x , (2.163)
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using the fact that x(t) = (t2,−t)T is a solution. Hint: The solution is(
t2(1− log t) −t2 log t

t log t t(1 + log t)

)
(2.164)

(b) Compute the solution of

x′ =

(
1
t
−1

1
t2

2
t

)
x+

(
t
−t2

)
, (2.165)

with initial condition x(1) = (0, 0)T .

6. Compute the resolvant eAt for the equations x′ = Ax with

(a)

A =

(
−1 −2
4 3

)
. (2.166)

(b)

A =

(
1 −1
−1 1

)
. (2.167)

(c)

A =

 1 0 0
2 1 0
−1 3 1

 . (2.168)

(d)

A =
1

9

 14 4 2
−2 20 1
−4 4 20

 (2.169)

Hint: All eigenvalues are equal to 2.

7. The equation of motion of two coupled harmonic oscillators is

x′′1 = −αx1 − κ(x1 − x2) ,

x′′2 = −αx2 − κ(x2 − x1) . (2.170)

This system is a Hamiltonian system. Find the Hamiltonian function. Find a
fundamental matrix for this system. You can either write it as a first order system
and compute the chararcteristic polynomial or, better, stare at the equation long
enough until you make a clever Ansatz. Discuss the solution in the case where
x1(0) = 0, x′1(0) = 1, x2(0) = 0, x′2(0) = 0.
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8. Consider the linear differential equation

x′ = A(t)x , A(t) = S(t)−1BS(t) (2.171)

where

B =

(
−1 0
4 −1

)
, S(t) =

(
cos(at) − sin(at)
sin(at) cos(at)

)
(2.172)

(a) Show that, for any t, all eigenvalues of A(t) have a negative real part.

(b) Show, that for a suitable choice of a, the differential equation (2.171) has
solutions x(t) which satisfy limt→∞ ‖x(t)‖ =∞. Hint: Set y(t) = B(t)x(t).

9. Consider the system

x′ = A(t)x , A(t) =

(
1 t
0 −1

)
. (2.173)

(a) Compute the resolvent of (2.173).

(b) Show that R(t, t0) 6= exp
(∫ t
t0
A(s) ds

)
.

(c) Show that A(t) does not commute with
∫ t
t0
A(s) ds.

(d) Show that if A(t) does commute with
∫ t
t0
A(s) ds then the resolvent for x′ =

A(t)x is R(t, t0) = exp
(∫ t
t0
A(s) ds

)
10. (a) Consider the linear inhomogenous equation x′ = Ax + f(t) where f(t) is

periodic with period p. Show that the system has a unique solution xp(t) of
period p if A has no eigenvalue which is a multiple 2iπ/p.
Hnt: Use Duhamel’s formula to reduce the existence of a solution to the
equation x0 = epAx0 +W for the initial condition x0.

(b) Consider the second order equation x′′ + bx + kx = g(t) with b ≥ 0 and
k ≥ 0 and g(t) periodic of period p. Determine for which values of b and k
the equation has a periodic solution of period p.

(c) Show that if all the eigenvalues of A have negative real part then every
solution y(t) of x′ = Ax + f(t) converges to periodic solution found in A,
i.e. limt→∞ y(t)− xp(t) = 0. Hint: Use Duhamel’s formula.

11. Consider the scalar equation (i.e. n = 1) x′ = f(t)x where f(t) is continuous and
periodic of period p.

(a) Determine P (t) andR in the decomposition of the resolvent given by Floquet
Theorem.
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(b) Give necessary and sufficient conditions in terms of f(t) for the solutions to
be bounded as t→ ±∞ or to be periodic.

12. Compute the resolvant R(t, 0) (in real representation) for the ODE

x′ = cos(t)x− sin(t)y ,

y′ = sin(t)x+ cos(t)y . (2.174)

and determine P (t) and R in Floquet Theorem Hint: Find an equation for z =
x+ iy.

13. Consider the equation x′ = A(t)x where A is periodic of period p. Show that a
solution x(t) is asymptotically stable if and only if the Floquet multipliers have
absolute value less than 1.

14. Consider the differential equation x′′+εf(t)x = 0, where f(t) is periodic of period
2π and

f(t) =

{
1 if 0 ≤ t < π
0 if π < t ≤ 2π

. (2.175)

For both ε = 1/4 and ε = 4

(a) Consider the fundamental solution Φ(t) which satisfies Φ(0) = I and com-
pute the corresponding transition matrix C = epR.

(b) Compute the Floquet multipliers (the eigenvalues of C).

(c) Describe the behavior of solution.

15. Let A(t) be periodic of period p and consider ODE x′ = A(t)x.

(a) Show that the transition matrix C depends on the fundamental solution,
but that the eigenvalues of C = epR are independent of this choice.

(b) Show that for each Floquet multiplier λ (the eigenvalue of C), there exists
a solution of x′ = A(t)x such that x(t+ p) = λx(t), for all t.

16. Consider the equation x′ = A(t)x where A(t) is periodic of period p.

(a) Use Floquet Theorem and Liouville Theorem to show that

det(epR) = e
∫ p
0

Trace(A(s)) ds . (2.176)

(b) Deduce from (a) that the characteristic exponents µi satisfy

µ1 + · · ·+ µn =
1

p

∫ p

0
Trace(A(s)) ds (2.177)
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17. Show that the system

x′ = −y + x(1− x2 − y2) , (2.178)

y′ = x+ y(1− x2 − y2) , (2.179)

z′ = z . (2.180)

is expressed in cylinder coordinates x = r cos(θ), y = r sin(θ) by

r′ = r(1− r2) , (2.181)

θ′ = 1, (2.182)

z′ = z . (2.183)

It is easy to verify that φ(t) = (− sin(t), cos(t), 0) is a periodic orbit. Determine
the corresponding variational equationΨ′ = A(t)Ψ = f ′(φ(t))Ψ and solve it.

18. Consider the equation for the mathematical pendulum

x′′ + sin(x) = 0 , x(0) = ε , x′(0) = 0 , (2.184)

where ε is supposed to be small. Show that the solution can be written in the
form

x(t) = εx1(t) + ε2x2(t) + ε3x3(t) +O(ε4) . (2.185)

Compute x1(t), x2(t), and x3(t). Hint: Taylor expansion.



Chapter 3

Stability analysis

3.1 Stability of critical points of nonlinear systems

Consider the autonomous equation x′ = f(x) and let us assume that a is an isolated
critical point, i.e. f(a) = 0 and there exists a neighborhood Br(a) of a such that
Br(a) contains no other singularities of a. We will study the behavior of solutions in a
neighborhood of a.

It is convenient to change variable and set y = x− a and define g(y) ≡ f(y + a) so
that g(0) = 0. Then we have y′ = x′ = f(x) = f(y + a) = g(y). Therefore we can and
will always assume that the critical point is a = 0.

If f is of class C1, we can linearize around 0. We write f(x) as

f(x) =
df

dx
(0)x+ g(x) or g(x) = f(x)− df

dx
(0)x . (3.1)

We have g(0) = 0 and

g(x) = g(x)− g(0) =
∫ 1

0

d

ds
g(sx) ds =

∫ 1

0

(
df

dx
(sx)− df

dx
(0)

)
x ds (3.2)

and thus

‖g(x)‖ = sup
{y ; ‖y‖≤‖x‖}

∥∥∥∥∥ dfdx(y)− df

dx
(0)

∥∥∥∥∥ ‖x‖ , (3.3)

and so

lim
‖x‖→0

‖g(x)‖
‖x‖

= 0 . (3.4)

So the differential equation has the form

x′ = Ax+ g(x) (3.5)

where A = df
dx

(0) and g satisfies (3.4).
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Theorem 3.1.1 (Stability Theorem) Let g : (t0,∞)×U be continuous and locally
Lipschitz in U where U is a neighborhood of 0. Let us assume that

lim
‖x‖→0

sup
t>t0

‖g(t, x)‖
‖x‖

= 0 . (3.6)

Let A be a n× n matrix whose all eigenvalues have negative real part, Reλi < 0. Then
the zero solution of

x′ = Ax+ g(t, x) (3.7)

is asymptotically stable.

Proof: Since g continuous and locally Lipschitz, we have existence of solutions x(t) =
x(t, t0, x0) if x0 is in a neighborhood of 0. We use the following generalization of
Duhamel’s formula: x(t) is solution of the integral equation

x(t) = eAtx0 +
∫ t

t0
eA(t−s)g(x(s)) ds . (3.8)

One can verify this formula by differentiation. Since the real parts of the eigenvalues
of A are negative we conclude that there exists constants K > 0 and µ > 0 such that

‖eA(t−t0)‖ ≤ Ke−µ(t−t0) . (3.9)

From this we deduce the estimate

‖x(t)‖ ≤ Ke−µ(t−t0)‖x0‖+K
∫ t

t0
e−µ(t−s)‖g(x(s))‖ ds . (3.10)

Since ‖g(t, x)‖/‖x‖ → 0 uniformly in t, for any b > 0 there exists ε > 0 such that
‖g(t, x)‖ ≤ b‖x‖ provided ‖x‖ ≤ ε. In the sequel we choose b = µ

2K
.

As long as the solution x(t) stays in {x ; ‖x‖ ≤ ε} we have the bound

eµ(t−t0)‖x(t)‖ ≤ K‖x0‖+Kb
∫ t

t0
eµ(s−t0)‖x(s)‖ ds . (3.11)

By Gronwall Lemma we obtain

eµ(t−t0)‖x(t)‖ ≤ K‖x0‖ebK(t−t0) . (3.12)

or, with b = µ
2K

,

‖x(t)‖ ≤ K‖x0‖e−
µ
2
t . (3.13)

We set δ := ε
K

. If ‖x0‖ ≤ δ, then the estimate shows that x(t) stays in {x ; ‖x‖ ≤ ε}
for all t > 0. This shows that the zero solution is asymptotically stable.

We prove next an instability result. We will consider the equation x′ = Ax+g(t, x)
and assume that A has at least one eigenvalue has a positive real part.
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Theorem 3.1.2 (Instability Theorem) Let g : (t0,∞)×U be continuous and locally
Lipschitz in U where U is a neighborhood of 0. Let us assume that

lim
‖x‖→0

sup
t>t0

‖g(t, x)‖
‖x‖

= 0 . (3.14)

Let A be a n × n matrix and let us suppose that at least one eigenvalue of A has a
positive real part. Then the zero solution of

x′ = Ax+ g(t, x) (3.15)

is unstable.

Proof: We first transform the differential equation into a form which is better suited to
our purposes. Let λ1, · · · , λn be the eigenvalues of A (counting multiplicities). There
exists an invertible matrix S such that B = S−1AS is in Jordan normal form, i.e.,
bii = λi and bi,i+1 = 1 or 0 and all other bij = 0. Let H be the diagonal matrix
H = diag(η, η2, · · · , ηn) and so H−1 = diag(η−1, η−2, · · · , η−n). It is easy to check that
for the matrix C = H−1BH we have cii = λi and ci,i+1 = η or 0 and and all other
cij = 0.

We now set x(t) = SHy(t), then the equation (3.15) transforms into

y′ = Cy + h(t, y) , (3.16)

where
h(t, y) ≡ H−1S−1g(t, SHy) . (3.17)

Since g satisfies condition (3.14), so does h. Indeed from ‖g(t, x)‖ ≤ b‖x‖ for ‖x‖ ≤ δ
it follows that

‖h(t, y)‖ ≤ ‖H−1S−1‖ ‖SH‖ b‖y‖ , for ‖y‖ ≤ δ

‖SH‖
. (3.18)

The ith component of (3.16) has either the form

y′i = λiyi + hi(t, y) , (3.19)

or
y′i = λiyi + ηyi+1 + hi(t, y) . (3.20)

Let us denote by j the indices for which Reλj > 0 and by k the indices for which
Reλk ≤ 0. We set

R(t) =
∑
j

|yj(t)|2 , r(t) =
∑
k

|yk(t)|2 . (3.21)
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Let us choose η such that

0 < 6η < Reλj , for all j (3.22)

and δ so small that
‖h(t, y)‖ ≤ η‖y‖ for ‖y‖ ≤ δ . (3.23)

If y(t) is a solution of (3.19) or (3.20) with

‖y0‖ ≤ δ , r(0) ≤ R(0) , (3.24)

then as long as ‖y(t)‖ ≤ δ and r(t) ≤ R(t) we have

R′(t) = 2
∑
j

Re y′j ȳj

=
∑
j

2Reλjyj ȳj + {ηRe yj+1ȳj}+ Re ȳjhj(t, y) (3.25)

where the term in brackets appears or not depending on j. By Cauchy-Schwartz
inequality we have∣∣∣∣∣∣

∑
j

Re yj+1ȳj

∣∣∣∣∣∣ ≤
∑
j

|yj+1yj| ≤
√∑

j

|yj|2
∑
j

|yj+1|2 ≤ R . (3.26)

and ∣∣∣∣∣∣
∑
j

Re ȳjhj(t, y)

∣∣∣∣∣∣ ≤
√∑

j

|yj|2
∑
j

|hj|2 ≤ R1/2‖h‖. , (3.27)

Since we assumed that r(t) ≤ R(t) and ‖y(t)‖ ≤ δ we have

R1/2‖h‖ ≤ R1/2η‖y‖ ≤ ηR1/2
√
R + r ≤ 2ηR (3.28)

and ∑
j

Reλjyj ȳj > 6ηR . (3.29)

Therefore we have the equation

1

2
R′(t) > 6ηR− ηR− 2ηR = 3ηR . (3.30)

A similar equation holds for r. Using Reλk ≤ 0 one obtains

1

2
r′(t) < ηr + 2ηR . (3.31)
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. As long as r(t) < R(t) we have

1

2
(R′ − r′) > η(3R− r − 2R) = η(R− r) > 0 , (3.32)

i.e., the difference R− r is increasing as long as it is positive. Therefore

‖y(t)‖2 ≥ R2 − r2 ≥ (R2(t0)− r2(t0))e2η(t−t0) . (3.33)

So this solution leaves the domain given by ‖y‖ ≤ δ, this means that the trivial solution
is unstable.

From Theorems 3.1.1 and 3.1.2 we obtain immediately

Corollary 3.1.3 Let f(x) be a function of class C2 and let a be a critical point of f ,
i.e. f(a) = 0.

1. If the eigenvalues of A = df
dx

(a) have all a negative real part, then the critical
point a is asymptotically stable.

2. If at least one of the eigenvalues of A = df
dx

(a) has all a positive real part, then
the critical point a is unstable.

Example 3.1.4 The Predator-Prey equations are given by

x′ = x(α− βy) , y′ = y(γx− δ) , (3.34)

where α, β, γ, δ are given positive constants and we assume that x ≥ 0 and y ≥ 0.

dx

dy
=

x

y

(α− βy)

(γx− δ)
or

(γx− δ)
x

dx =
(α− βy)

y
dy . (3.35)

There are two critical points a = (0, 0) and b = (δ/γ, α/β). The linearization around
(0, 0) yields

A =
df

dx
(0, 0) =

(
α 0
0 −δ

)
, (3.36)

with eigenvalues α and −δ, and

B =
df

dx
(δ/γ, α/β) =

(
0 −βδ/γ

γα/β 0

)
, (3.37)

with eigenvalues λ = ±i
√
αδ. From Theorem 3.1.2 we conclude that (0, 0) is un-

stable while neither Theorem 3.1.2 nor Theorem 3.1.1 apply to the critical point
b = (δ/γ, α/β) which is linearly stable.
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On the other hand, as we have seen in Example 1.1.2, we know that the solutions
lie on the curves

γx− δ log x+ βy − α log y = c (3.38)

and therefore are periodic. This shows (see Figure 1.2) that b = (δ/γ, α/β) is still stable
for the nonlinear equation. Note also, even though (0, 0) is unstable, any solution which
starts close to (0, 0) will come back close to (0, 0) infinitely many times.

In the previous example we have a critical point which has a stable linearization
and is stable. This is by no means typical. The nonlinearity can can change a linearly
stable critical point into an asymptotically stable or an unstable critical point as the
following example shows.

Example 3.1.5 Consider the equation

x′ = y − µx(x2 + y2) ,

y′ = −x− µy(x2 + y2) . (3.39)

The point (0, 0) is a critical point. The linearized system around (0, 0) is x′ = y,
y′ = −x with eigenvalues ±i and thus stable. To investigate the behavior of the
nonlinear system we change into polar coordinates and find

θ′ = 1 , r′ = −µr . (3.40)

From this we see that if µ > 0 the critical point (0, 0) is asymptotically stable and if
µ < 0 (0, 0) is asymptotically stable.

Example 3.1.6 (Competing species) Consider the set of equations

x′ = x− ax2 − cxy , x ≥ 0 ,

y′ = y − by2 + dxy y ≥ 0 , (3.41)

where a, b, c, d > 0. This models the competition of two species living in a certain
territory. If, say y = 0, then y′ = 0 and x′ = x − ax2 (logistic equation) then the
population x has linear growth rate with a natural limit (x = 1/a is an asymptotically
stable equilibrium). A similar situation holds if x = 0. This also implies that if x0 and
y0 are nonnegative they remain so forever. The third term on the right side of (3.41)
favors species y over species x if they are interacting.

The critical points with their linearization are given by

(0, 0) , (0, 1/b) , (1/a, 0) ,

(
b− c
ab+ cd

,
a+ d

ab+ cd

)
(3.42)
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If b ≥ c (weak interaction) the fourth critical point is found in the domain of interest
(x, y > 0) while if b < c (strong interaction) we have only three relevant critical points.
For the first three critical points linearization gives gives

crit.point linearization eigenvalues b > c b < c

(0, 0)

(
1 0
0 1

)
λ1 = 1, λ2 = 1 source source

(0, 1
b
)

(
1− c

b
0

d
b

−1

)
λ1 = −1, λ2 = 1− c

b
saddle sink

( 1
a
, 0)

(
−1 − c

a

0 1 + d
a

)
λ1 = −1, λ2 = 1 + d

a
saddle saddle

(3.43)

For the last critical point linearization around
(

b−c
ab+cd

, a+d
ab+cd

)
gives

A =
1

ab+ cd

(
−a(b− c) −c(b− c)
d(a+ d) −b(a+ d)

)
. (3.44)

For b > c we have λ1λ2 = det(A) > 0 and λ1 + λ2 = Trace(A) < 0 from which we
conclude that A has 2 eigenvalues with negative real part and so we have a stable
critical point (both a sink or a spiral are possible).

In the case of strong interaction (b < c) the species y will die out while for weak
interaction (b > c) there exists a positive stable equilibrium where the two species
coexist, see figure 3.1
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Figure 3.1: Competing species with a = 1, c = 3, d = 3, and b = 1 (left) and
b = 5(right)
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3.2 Stable and unstable manifold theorem

We continue our investigation of the behavior of solutions near a critical point of the
nonlinear equation x′ = f(x), where f is of class C1. As we have seen in Section 3.1
we can always assume that the critical point is 0 and that the equation has the form

x′ = Ax+ g(x) , (3.45)

and g(x) = f(x) − df
dx

(0)x satisfies g(0) = 0 and dg
dx

(0) = 0. Moreover for any ε > 0
there exists δ > 0 such that ‖x‖ < δ, ‖y‖ < δ implies that ‖g(x)− g(y)‖ ≤ ε‖x− y‖.

Definition 3.2.1 A critical point a for the ODE x′ = f(x) is called hyperbolic if the
matrix A = df

dx
(a) has no eigenvalues with zero real part.

Let 0 be an hyperbolic critical point for the linear equation x′ = Ax, where x ∈ Rn

and A has k eigenvalues with negative real part and n − k eigenvalues with positive
real parts (counting multiplicities). We can split Rn into invariant stable and unstable
subspace, Rn = Es ⊗Eu with dimEs = k and dimEu = n− k. For any point x in the
stable subspace Es we have limt→∞ ‖x(t)‖ = 0 and the convergence is exponentially
fast. For any point in the unstable subspace Eu we have limt→−∞ ‖x(t)‖ = 0 and the
convergence is also exponentially fast.

We will show that the situation is essentially the same for the nonlinear equation
x′ = Ax + f(x) in a neighborhood of an hyperbolic critical points: There exists a
invariant manifold (in fact a k-dimensional hypersurface)W s (the local stable manifold)
defined locally around the origin which is tangent to Es and such that any solution of
x′ = Ax+f(x) which starts on W u converges exponential fast to 0 as t→∞. Similarly
there exists a manifold W s of dimension n− k, tangent to Es at the origin, such that
such that any solution of x′ = Ax + f(x) which starts on W s converges exponential
fast to 0 as t→∞.

We can always find an invertible C such that C−1AC is block diagonal

B = C−1AC =

(
P 0
0 Q

)
. (3.46)

and the eigenvalues of the k×k matrix P have all negative real parts and the eigenvalues
of the n−k×n−k matrix Q have all positive real parts. If we set x = Cy, the equation
becomes

y′ = By + h(y) (3.47)

and h(y) = C−1g(Cy) has the same properties as g.

Theorem 3.2.2 Stable Manifold Theorem Let A be a n×n matrix with k eigenvalues
with negative real part and n− k eigenvalues with positive real parts. Let g : U → Rn
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(U is a neighborhood of the origin) be a function of class C1 which satisfy g(0) = 0,
g′(0) = 0, and for any ε > 0 there exists δ > 0 such that

‖g(x)− g(y)‖ ≤ ε‖x− y‖ , whenever ‖x‖ < δ , ‖y‖ < δ . (3.48)

Consider the ODE
x′ = Ax+ g(x) . (3.49)

Then there exists a manifold W s (the local stable manifold) which is invariant under
the flow of (3.49) and contains the origin. Any solution of (3.49) which start on W s

converges exponential fast to 0 as t → ∞. Moreover there exists a manifold W u (the
local unstable manifold) which is invariant under the flow of (3.49) and contains the
origin. Any solution of (3.49) which start on W u converges exponential fast to 0 as
t→ −∞.

Proof: We can always find an invertible C such that C−1AC is block diagonal

B = C−1AC =

(
P 0
0 Q

)
. (3.50)

and the eigenvalues of the k×k matrix P have all negative real parts and the eigenvalues
of the n−k×n−k matrix Q have all positive real parts. If we set x = Cy, the equation
becomes

y′ = By + h(y) (3.51)

and h(y) = C−1g(Cy) has the same condition as g does.
We will construct W u for (3.51) as the graph of a function Ψ : Rk → Rn−k. The

equations
yj = Ψj(y1, · · · , yk) , j = k + 1, · · · , n . (3.52)

define a k-dimensional hypersurface in the y-space Rn. The unstable manifold in x-
space for (3.49) is then obtained by the linear change of variables x = Cy.

Let us define

U(t) =

(
ePt 0
0 0

)
, V (t) =

(
0 0
0 eQt

)
. (3.53)

Then we have
eBt = U(t) + V (t) , (3.54)

and
U ′(t) = PU(t) = BU(t) , V ′(t) = QV (t) = BV (t) . (3.55)

Since all eigenvalues of P (resp Q) have negative (resp. positive) real parts, we set
α = maxReλj<0 Reλi and choose σ sufficiently small such that

‖U(t)‖ ≤ Ke−(α+σ)t , for all t ≥ 0 ,

‖U(t)‖ ≤ Keσt , for all t ≤ 0 . (3.56)
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Nest consider the integral equation

u(t, a) = U(t)a+
∫ t

0
U(t− s)h(u(s, a)) ds−

∫ ∞
t

V (t− s)h(u(s, a)) ds . (3.57)

By differentiating and using (3.55) one sees easily that if u(t, a) is a continuous solution
of the integral equation (3.57), then it is also a solution of y′ = Ay + h(y). We solve
this integral equation by the methods of successive approximations with

u0(t, a) = 0 ,

u(m+1)(t, a) = U(t)a+
∫ t

0
U(t− s)h(u(m)(s, a)) ds−

∫ ∞
t

V (t− s)h(u(m)(s, a)) ds .

We assume that ε ≤ σ/4k and ‖a‖ ≤ δ/2K where ε and δ are given by the Lipschitz-
type condition on h. We show then by induction that

‖u(m)(t, a)‖ ≤ 2K‖a‖e−αt , (3.58)

‖u(m)(t, a)− u(m−1)(t, a)‖ ≤ K‖a‖e−αt

2m−1
, for t ≥ 0. (3.59)

Let us assume that (3.58) holds for u(m)(t, a). Then, ‖u(m)(t, a)‖ ≤ 2K‖a‖ ≤ δ and so,
using that ‖h(y)‖ ≤ ε‖y‖ if ‖y‖ ≤ δ and the bounds on U(t) and V (t) we have

‖u(m+1)(t, a)‖

≤ ‖U(t)‖‖a‖+ ε
∫ t

0
‖U(t− s)‖‖u(m)s, a)‖ ds+ ε

∫ ∞
t
‖V (t− s)‖‖u(m)(s, a)‖ ds

≤ Ke−(α+σ)t‖a‖+ 2εK2‖a‖
∫ t

0
e−(α+σ)(t−s)e−αs ds+ 2εK2‖a‖

∫ ∞
t

eσ(t−s)e−αs ds

≤ Ke−(α+σ)t‖a‖+ 2εK2e−αt
1

σ
+ 2εK2e−αt

1

α + σ
≤ 2Ke−αt , (3.60)

where in the last inequality we have used that ε ≤ σ/4K.
Let us consider next (3.59). It holds for m = 1 because h(0) = 0 and because of the

bound on ‖U(t)‖. Since u(m)(t, a) ≤ 2K‖a‖ ≤ δ we use that ‖h(y)− h(z)‖ ≤ ε‖y − z‖
if ‖y‖, ‖z‖ ≤ δ and we have, by the induction hypothesis,

‖u(m+1)(t, a)− u(m)(t, a)‖
‖un(s, a)− un−1(s, a)‖ ds
‖un(s, a)− un−1(s, a)‖ds

≤ ε
∫ t

0
Ke−(α+σ)(t−s)K‖a‖e−αs

2m−1
ds + ε

∫ ∞
t

eσ(t−s)K‖a‖e−αs

2m−1
ds

≤ εK2‖a‖
2n−1

(
e−(α+σ)t

∫ t

0
eσs ds+ eσt

∫ ∞
t

e−(α+σ)s ds
)

≤ εK2‖a‖e−αt

2m−1

(
1

σ
+

1

σ + α

)
≤ K‖a‖e−αt

2m
, (3.61)



CHAPTER 3. STABILITY ANALYSIS 86

where, in the last inequality, we assume that ε < σ/4K.
The bound (3.59) and using telescopic sum implies that for k > m and t > 0

‖u(k)(t, a)− u(m)(t, a)‖ ≤ K‖a‖
∞∑
j=m

1

2j
, (3.62)

and thus {u(m)(t, a)} is a Cauchy sequence uniformly in t > 0. Thus u(t, a) =
limn→∞ u

(m)(t, a) is continuous and satisfies the integral equation (3.57). Moreover
by (3.58), u(t, a) satisfies the bound

‖u(t, a)‖ ≤ 2Ke−αt , for t ≥ 0 and ‖a‖ ≤ δ/2K . (3.63)

From the form of the integral equation (3.57), it is clear that the last n − k com-
ponents of the vector a do not enter the computation and hence they may and will
be taken to be 0. The components of u(t, a) = (u1(t, a), · · ·un(t, a)) satisfy the initial
conditions

uj(0, a) = aj for j = 1, · · · , k . (3.64)

and

uj(0, a) = −
∫ ∞

0
V (−s)h(u(s, a1, · · · , ak, 0, · · · 0)) for j = k + 1, · · · , n . (3.65)

Now we define the function Ψ = (ψj+1, · · · , ψn) by

ψj(a1, · · · , ak) = uj(0, a1, · · · , ak) . (3.66)

The map Ψ is defined in a neighborhood of the origin and define a n− k dimensional
hypersurface S yj = Ψj(y1, cdots, yk).

If y(t) is a solution of y′ = By + h(y) with y(0) ∈ S, i.e., y(0) = u(0, a) then
y(t) = u(t, a) and by (3.63) limt→∞ y(t) = 0.

On the other hand if y(t) is a solution with ‖y(0)‖ small and y(0) not on S, then
y(t) will exit the ball {‖y‖ ≤ δ}. By contradiction suppose that y(t) ≤ δ for all t ≥ 0.
Then we have

y(t) = eBty(0) +
∫ ∞

0
eB(t−s)h(y(s)) ds

= U(t)y(0) + V (t)c+
∫ t

0
U(t− s)h(y(s)) ds−

∫ ∞
t

V (t− s)h(y(s)) ds .(3.67)

where c is the vector
c = y(0) +

∫ ∞
0

V (−s)h(y(s)) ds . (3.68)

The integral in (3.68) converges by the bound on ‖V (t)‖ and since h(y(s)) is bounded.
Then all terms in (3.67) are uniformly bounded in t except possible the term V (t)c.
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Since all eigenvalues of q have positive real parts, we have ‖V (t)‖ ≥ eγt. Thus V (t)c is
unbounded unless c = 0. But if c = 0, y(0) ∈ S which is a contradiction.

The existence of an unstable manifold is proved exactly in the same way by reversing
time t 7→ −t, i.e., by considering the system

y′ = −By − h(y) . (3.69)

The stable manifold for (3.69) is the unstable manifold for y′ = By + h(y). This
concludes the proof of the theorem.

Remark 3.2.3 With a little more work one can show that the function Ψj are differ-
entiable. This is similar to the proof that solution are differentiable with respect to
the initial conditions. We will not do it here. We will show however that if we assume
the map Ψ to be differentiable, then the stable manifold W s is tangent to the stable
subspace Es of y′ = By which is yj+1 = · · · yn = 0. To see this we not that Ψj(0, 0) = 0
and

|ψj(0, a)| =
∣∣∣∣∫ ∞

0
V (−s)h(u(s, a)) ds

∣∣∣∣ ≤ 2εK2‖a‖/σ . (3.70)

Since ε can be made arbitrarily small by choosing ‖a‖ small enough, this shows that
∂ψj
∂yi

(0) = 0. And so W s is tangent to Es.

Example 3.2.4 The proof of the stable manifold theorem provides an algorithm to
construct the stable and unstable manifold. Let us consider the system

x′1 = −x1 − x2
2 ,

x′2 = x2 + x2
1 . (3.71)

Here A =

(
−1 0
0 1

)
is already in Jordan normal form. So we have

U(t) =

(
e−t 0
0 0

)
, V (t) =

(
0 0
0 et

)
. (3.72)

and we can take a = (a1, 0)T . The integral equation for u(t, a) is given by

u(t, a) =

(
e−ta1

0

)
−
∫ t

0

(
e−(t−s)u2

2(s)
0

)
ds −

∫ ∞
t

(
0

e(t−s)u1(s)

)
ds . (3.73)

Therefore we find

u(0)(t, a) = 0 ,

u(1)(t, a) =

(
e−ta1

0

)
,
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u(2)(t, a) =

(
e−ta1

0

)
−
∫ ∞
t

(
0

e(t−s)e−2sa2
1

)
ds =

(
e−ta1

−1
3
e−2ta2

1

)
.

u(3)(t, a) =

(
e−ta1

0

)
− 1

9

∫ t

0

(
e−(t−s)e−4sa4

1

0

)
ds−

∫ ∞
t

(
0

e(t−s)e−2sa2
1

)
ds

=

(
e−ta1 + 1

27
(e−4t − e−t)a4

1

−1
3
e−2ta2

1

)
. (3.74)

and one sees that the next term will be O(a5
1). The stable manifold is given by ψ2(a1) =

u2(0, (a1, 0)) and is given by

ψ2(a1) = −1

3
a2

1 +O(a5
1) . (3.75)

Hence the stable manifold is given

W s : x2 = −1

3
x2

1 + 0(x5
1) . (3.76)

The unstable manifold is obtained by changing t into −t and exchanging x1 and x2

and one obtains

W u : x1 = −2

3
x2

1 + 0(x5
1) . (3.77)

In figure 3.2 we show the approximate manifolds as well as the exact manifolds. Note
that the stable and unstable close into a loop (homoclinic loop).
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Figure 3.2: The stable and unstable manifolds for the ODE (3.71): on the left the
approximate solutions and on the right the global stable and unstable manifold.
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3.3 Center manifolds

It is natural to ask whether an analog of Theorem 3.2.2 holds true for x′ = Ax+ f(x)
when the center subspace Ec for x′ = Ax is non trivial, i.e., when A has eigenvalues
with zero real part. The answer is yes, although there are important differences. The
following theorem is quite a bit harder to prove than Theorem 3.2.2 and we will not
give the proof here.

Theorem 3.3.1 Let f : U → Rn be of class C1 where U is an open neighborhood of the
origin and let 0 be a critical point, f(0) = 0. Suppose that df

dx
(0) has k eigenvalues with

negative real parts, j eigenvalues with positive real parts, and m = n−k−j eigenvalues
with zero real parts. Then there exist

1. a m-dimensional center manifold W c of class C1 tangent to the center subspace
Ec,

2. a k-dimensional center manifold W s of class C1 tangent to the stable subspace
Es,

3. a m-dimensional center manifold W u of class C1 tangent to the unstable subspace
Eu.

Furthermore the manifolds W c, W s, W u are invariant under the flow of the ODE
x′ = f(x).

Center manifolds are different from stable and unstable manifolds: in general they
are not uniquely defined. The following example is typical.
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Figure 3.3: The phase portrait for the ODE (3.78).
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Example 3.3.2 Consider the system

x′ = x2 ,

y′ = −y . (3.78)

The linearized equation is

x′ = 0 ,

y′ = −y . (3.79)

The center subspace is the x-axis, while the stable subspace is the y-axis. The system
(3.78) is easily solved: x(t) = 1

t−x0
, y(t) = e−ty0. Some solution are showed in figure

3.3. Any solution curve of (3.78) with x0 < 0 patched together with the positive x-axis
gives a one-dimensional center manifold which is tangent to the center subspace. This
simple example shows that the center manifold is not unique. There are infinitely many
of them.

The stable manifold theorem 3.2.2 gives a a complete description of the dynamics of
x′ = f(x) in a neighborhood of a hyperbolic critical point. The center manifold theorem
does provide such a description; provided we determine the behavior of solutions on
the center manifold W c.

We illustrate how this can be done by considering first the case where Eu is trivial,
i.e., df

dx
(0) has m eigenvalues with zero real part and k eigenvalues with negative real

parts with m+ k = n. In that case, by a linear change of coordinates, we can assume
that the system has the following form

x′ = Cx+ f(x, y) ,

y′ = Px+ g(x, y) . (3.80)

where x ∈ Rm, y ∈ Rk, f(0, 0) = g(0, 0) = 0, f ′(0, 0) = g′(0, 0) = 0, the m×m matrix
C has eigenvalues with zero real parts, and the k × k matrix P has eigenvalues with
negative real parts.

The local center manifold is tangent to Ec at 0 and is given by the graph of a
function h

W c =
{

(x, y) ∈ Rm ×Rk : y = h(x) for ‖x‖ ≤ δ
}
. (3.81)

So the flow on the center manifold is given by the set of differential equation

x′ = Cx+ f(x, h(x)) . (3.82)

On the other hand, we can obtain an equation for h(x). Since y = h(x) and W c is
invariant under the flow

y′ =
dh

dx
(x)x′ (3.83)
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and substituting the equation for x′ and y′ gives the nonlinear equation

dh

dx
(x) (Cx+ f(x, h(x)))− Ph(x)−G(x, h(x)) = 0 . (3.84)

The equation for h is first order nonlinear partial differential equation for h. While
it is likely to be impossible to solve this equation, one can use it to investigate the
qualitative behavior of solutions. The idea is to expand the function h(x) in a power
series in x and determine the approximate shape of h(x). We illustrate this with an
example

Example 3.3.3 Consider the system

x′ = x2y − x5 ,

y′ = −y + x2 . (3.85)

In this case C = 0 and P = −1, f(x, y) = x2y − x5, g(x, y) = x2. We expand h(x)

h(x) = ax2 + bx3 + 0(x4) ,
dh

dx
(x) = 2ax+ 3bx2 +O(x3) , (3.86)

and substitute in (3.84)

(2ax+ 3bx2 + · · ·)(ax4 + bx5 + · · · − x5) + ax2 + bx3 + · · · − x2 = 0 . (3.87)

Setting the coefficients of like powers to 0 yields a = 1, b = 0, c = 0 and so on.
Therefore

h(x) = x2 + 0(x5) (3.88)

and the equation on the center manifold W c near the origin is

x′ = x4 + 0(x5) , (3.89)

The unstable manifold is easily seen to be the y-axis. From this we easily seen that 0
is unstable, see figure (3.3)

Had we, instead used the center subspace y = 0 has an approximation for the
center manifold, we would have concluded instead that x′ = −x5, from we would have
inferred (wrongly) that 0 is stable.

These methods can be easily generalized to the case where Eu is not trivial. By a
suitable change of variable we can assume that the ODE has the form

x′ = Cx+ f(x, y) ,

y′ = Px+ g(x, y) .

z′ = Qx+ h(x, y) .

(3.90)
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Figure 3.4: some solutions and the he vector field for the ODE (3.85)

where where x ∈ Rm, y ∈ Rk, z ∈ Rj, f(0, 0) = g(0, 0) = h(0, 0)0, f ′(0, 0) = g′(0, 0) =
h′(0, 0) = 0, the m×m matrix C has eigenvalues with zero real parts, the k×k matrix
P has eigenvalues with negative real parts, and the j×j matrix Q has eigenvalues with
positive real parts.

In that case the local center manifold is given by

W c =
{

(x, y, z) ∈ Rm ×Rk ×Rj : y = m1(x) , z = m2(x) for ‖x‖ ≤ δ
}
. (3.91)

where m1(0) = m2(0) = 0, dm1

dx
(0) = dm2

dx
(0) = 0 since W c is tangent to the center

subspace Ec = {y = z = 0}.
The motion on the center manifold is given by

x′ = f(x,m1(x),m2(x)) , (3.92)

where m1 and m2 are solution of the system of partial differential equations

dm1

dx
(x) (Cx+ f(x,m1(x),m2(x)))− Pm1(x)− g(x,m1(x),m2(x)) = 0

dm2

dx
(x) (Cx+ f(x,m1(x),m2(x)))−Qm2(x)− h(x,m1(x),m2(x)) = 0 .(3.93)

This can solved to any degree of accuracy by expanding h1 and h2 in power series in x.

3.4 Stability by Liapunov functions

The linear stability analysis of the previous section allow to determine asymptotic sta-
bility or instability of a critical point by inspection of the linear part of f . There are
several questions which cannot be answered by this analysis. If a is an asymptotically
stable critical point of linear system, one might want to determine which portion of
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phase space actually converges to the critical point (i.e., determine its basin of attrac-
tion). Another question is to determine the stability of critical point for which some
of the eigenvalues of the linearization have a zero real part. In that case the linear
stability analysis of the previous section is inconclusive.

Let us consider the autonomous equation

x′ = f(x) , (3.94)

where f is locally Lipschitz in an open set U . We assume that 0 ∈ U and f(0) = 0.
The zero solution x(t) = 0 is an equilibrium state. The extension to an equilibrium
state x(t) = a is elementary.

We call a function V : D → R, where D is an open neighborhood of 0, a Liapunov
function if V (0) = 0 and V (x) > 0 for x ∈ D, x 6= 0.

We recall that the derivative of V along a solution x(t) is given by

d

dt
V (x(t)) =≡

n∑
j=1

∂V

∂xj
(x(t))x′i(t) = 〈∇V (x(t)) , f(x(t))〉 . (3.95)

We set
LV (x) = 〈∇V (x) , f(x)〉 . (3.96)

We also introduce the concept of exponential stability of a solution.

Definition 3.4.1 A solution x(t, t0, x0) is exponentially stable if there exists constants
c, γ > 0 and δ > 0 such that ‖ξ‖ ≤ δ implies that

‖x(t, t0, x0 + ξ)− x(t, t0, x0)‖ ≤ ce−γ(t−t0) . (3.97)

Clearly exponential stability implies asymptotic stability. For linear equation asymp-
totic stability and exponential stability are equivalent.

Theorem 3.4.2 (Stability Theorem of Liapunov) Let f : U → Rn (U an open
set of Rn) be locally Lipschitz with f(0) = 0. Let V be a Liapunov function defined in
an open neighborhood D of 0

1. If LV ≤ 0 in D then 0 is a stable critical point.

2. If LV < 0 in D \ {0} then 0 is asymptotically stable critical point.

3. if LV ≤ −αV and V (x) ≥ a‖x‖β in D (α, β, a are positive constants) then 0 an
exponentially stable critical point.
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Proof: 1. Choose η so small that the set Vη ≡ {x ; V (x) < η} is contained in D. Since
V (x) > 0 for x 6= 0 Vη is an open neighborhood of 0. Since LV ≤ 0 in Vη ⊂ D,
if x0 ∈ Vη then the solution x(t, 0, x0) exists for all t ≥ t0 and it does not leave Vη
ever. This implies stability since for η small enough we can choose δ and ε such that
{‖x‖ < δ} ⊂ Vη ⊂ {‖x‖ < ε}.

2. By 1. we know that for η sufficiently small x(t, t0, x0) stay in Vη for all times.
Moreover V (x(t, t0, x0)) is a positive decreasing function so that limt→∞ V (x(t)) = V ∗

exists. Let us assume that V ∗ 6= 0. The set M = {V ∗ ≤ V (x) ≤ η} is a compact
set which does not contain 0. We have x(t) ∈ M , for all t > t0 and maxx∈M LV (x) ≤
−α < 0. So dV

dt
(x(t)) ≤ −α for all t > t0 which is a contradiction. So we must have

V ∗ = 0 and limt→∞ ‖x(t)‖ = 0.
3. We have dV

dt
(x(t)) ≤ −αV (x(t))and thus, by Gronwall Lemma, V (x(t)) ≤

V (x(t0))e−α(t−t0). Since b‖x(t)‖β ≤ V (x(t)) we obtain ‖x(t)‖ ≤ V (x(t0))
b

e−
α
β

(t−t0) and
this proves exponential stability.

Theorem 3.4.3 (Instability theorem of Liapunov) Let f : U → Rn (U an open
set of Rn) be locally Lipschitz with f(0) = 0. Let V be a function defined in an open
neighborhood D of 0 (V is not necessarily positive) which satisfies

1. lim‖x‖→0 V (x) = 0.

2. LV (x) > 0 if x ∈ D \ {0}.

3. V (x) takes positive values in each sufficiently small neighborhood of 0.

Then 0 is unstable.

Remark 3.4.4 The conditions 1 and 3 of Theorem 3.4.3 are satisfied, in particular, if
V is a Liapunov function, i.e., V (0) = 0 and V (x) > 0, x ∈ D \ {0}.

Proof: Stability means that for any ε > 0, there exists δ > 0 such that ‖x0‖ ≤ δ implies
that ‖x(t, 0, x0)‖ ≤ ε for all t > 0.

Let us choose ε > 0 such that the set {x ; ‖x‖ ≤ ε} ⊂ D. Now for arbitrary δ > 0,
by assumptions 1 and 3 we can find x0 such that ‖x0‖ ≤ δ and V (x0) = α > 0.
By assumption 2, LV > 0, so that V (x(t)) ≥ α for all t ≥ 0. The set {x ; ‖x‖ ≤
ε and V (x) ≥ α} does not contain the origin and therefore there exists β > 0 such
that, in this set, LV (x) ≥ β. We thus obtain that

V (x(t))− V (x(0)) =
∫ t

0
LV (x(s)) ds ≥ βt , (3.98)

or
V (x(t)) ≥ α + βt (3.99)

as long as ‖x(t)‖ ≤ ε. This implies that x(t) actually exits the balls {x ; ‖x‖ ≤ ε}.
Since δ is arbitrary we conclude that 0 is unstable.
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Example 3.4.5 Consider the system of equations

x′ = ax− y + kx(x2 + y2) ,

y′ = x− ay + ky(x2 + y2) (3.100)

where a > 0 and k are constants. Clearly (0, 0) is a critical point and the linearization
gives

A =

(
a −1
1 −a

)
with eigenvalues λ = ±(a2 − 1) . (3.101)

and so we have

1. If a2 > 1 then 0 is a saddle point and it is unstable by Theorem 3.1.2.

2. If a2 = 1 the system is degenerate.

3. If a2 < 1 then the eigenvalues are purely imaginary and we have a center (vortex).

In order to study the case a2 < 1 we construct a Liapunov function. The linearized
system x′ = Ax has orbits which are the ellipses

V (x, y) = x2 − 2axy + y2 = c . (3.102)

It is quite natural to take V (x, y) a Liapunov function to study the effect of the non-
linear terms. We have

LV = (2x− 2ay)kx(x2 + y2) + (2y − 2ax)ky(x2 + y2)

= 2k(x2 + y2)(x2 + y2 − 2axy) . (3.103)

We conclude from Theorem 3.4.3 that 0 is unstable if k > 0 and from Theorem 3.4.2
that 0 is asymptotically stable for k < 0.

If a is a asymptotically stable critical point, then all solutions starting in a neigh-
borhood of a converge to a as t goes to infinity. We call a an attracting point or an
attractor. The basin of attraction of a is the set of point y such that x(t, 0, y) → a as
t→∞. Liapunov functions are useful to determine, or at least estimate, the basin of
attraction of a critical point.

For example, if V is a Liapunov function in a neighborhood D of a and LV < 0 in
D \ a, then D is the basin of attraction of a.

Example 3.4.6 Consider the system

x′ = −x3 ,

y′ = −y(x2 + z2 + 1)

x′ = − sin(z) (3.104)
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The critical points are (0, 0, nπ) with n = 0,±1,±2, · · ·. Note that if z = nπ then
z′ = 0 and thus the planes z = nπ are invariant. Any solution which starts in such
plane stays in this plane for all time t ∈ R. This implies that any solution which
starts in the region |z| < π stays in this region for ever. Let us study the stability of
0 = (0, 0, 0). The linearization around 0 gives the linear system with

A =

 0 0 0
0 −1 0
0 0 −1

 (3.105)

and this tells us nothing about the stability of this equilibrium point. However let us
consider the function V (x, y, z) = x2 + y2 + z2. We have

LV = −2x4 − 2y2(x2 + y2 + z2)− 2z sin(z) (3.106)

For |z| < π, LV < 0 except at the origin. It follows from Theorem 3.4.2 that the basin
of attraction of 0 is the entire region {(x, y, z), |z| < π}.

In many interesting examples, however, LV = 0 in some subset of D but never-
theless a is asymptotically stable and to study this we are going to prove a stronger
version of the Liapunov stability theorem.

Theorem 3.4.7 (Lasalle Stability Theorem) Let f : U → Rn (U an open set of
Rn) be locally Lipschitz with f(0) = 0. Let V be a Liapunov function defined in an
open neighborhood D of 0 and let us assume that the set G = {x ; V (x) ≤ α, x ∈ D}
is compact for some α > 0. Let us assume that LV (x) ≤ 0 for x ∈ G and that there is
no solution x(t), t ∈ R with x0 ∈ G on which V is constant. Then 0 is asymptotically
stable and Vα is contained in the basin of attraction of 0.

Proof: Let x0 ∈ G, then x(t) = x(t, 0, x0) ∈ G for all t > 0. This follows from the
fact that LV ≤ 0 in G and from the compactness of G (the distance from G to the
boundary of D is positive).

The proof is by contradiction. Let us assume that x(t) does not tend to 0. Since x(t)
stays in the compact set G there exists a sequence tn →∞ so that limn→∞ x(tn) = x∗

with x∗ ∈ G.
We claim that the solution y(t) = x(t, 0, x∗) starting at x∗ exists for all t ∈ R and

stays in the set G. Clearly y(t) exists for all positive t. On the other hand x(t, 0, x(tn))
is defined for all t ∈ [−tn, 0]. Since tn is an increasing sequence then, for any k ≥ 1,
x(t, 0, x(tn+k)) is also defined for all t ∈ [−tn, 0]. By the continuous dependence on
initial conditions we have that y(t) = x(t, 0, x∗) is defined for t ∈ [−tn, 0]. Since n is
arbitrary and tn →∞ this proves the claim.

We show next that V is constant on the solution y(t) = x(t, 0, x∗). If V (x∗) = b
then V (x(tn)) ≥ b and limn→∞ V (xtn) = b. More generally for any sequence sn with
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limn→∞ sn = ∞ we have limn→∞ V (xsn) = b. This follows from the fact that V is
nonincreasing along a solution. With sn = s + tn we have limn→∞ x(sn) = y(s) =
x(s, 0, x∗) and therefore V (x(s, 0, x∗)) = b. Since s is arbitrary this proves the claim.

This contradicts our assumption that V is not constant on any solution.

Example 3.4.8 Consider the equation x′′ + x′ + x3 = 0, or x′ = y and y′ = −y− x3

The equation x′′ + x3 is Hamiltonian with Hamiltonian y2/2 + x4/4. The term x′ = y
is a friction term and one expects that 0 is an attracting fixed point with basin of
attraction R2. Using the Liapunov function H(x, y) we find that LH = −y2, i.e,. LH
is non-positive but vanishes on the line y = 0. To apply Lasalle theorem we show that
H does not stay constant on any solution, except the trivial solution. By contradiction,
assume that H(x(t), y(t)) is constant then LH(x(t), y(t)) = 0 and thus y(t) = 0. The
equation y′ = −y− x3 implies then that x(t) = 0 and this contradicts our assumption
that the solution is not trivial. Lasalle Theorem implies that (0, 0) is asymptotically
stable and that its basin of attraction is the entire plane R2.

3.5 Gradient and Hamiltonian systems

There are several classes of systems where the use of Liapunov functions is very natural.

3.5.1 Gradient systems

Let V : U → R (U is an open set of Rn) be a function of class C2. A gradient system
on U ⊂ Rn is a differential equation of the form

x′ = −∇V (x) . (3.107)

(The negative sign is a traditional convention). The equilibrium points for (3.107) are
the critical points of V , i.e., the points a for which ∇V (a) = 0.

Consider the level sets of the function V , V −1(c) = {x ;V (x) = c}. If x ∈ V −1(c)
is a regular point, i.e., if ∇V (x) 6= 0, then, by the implicit function Theorem, locally
near x, V −1(c) is a smooth hypersurface surface of dimension n − 1. For example, if
n = 2, the level sets are smooth curves.

We summarize the properties of the gradient systems in

Proposition 3.5.1 Let V : U → Rn (U an open set in Rn) be of class C2 and let
x′ = −∇V (x) be a gradient system.

1. If x is a regular point of the level curve V −1(c), then the solution curve x(t) is
perpendicular to the level surface V −1(c).
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2. If a is an isolated minimum of V , then it a is an asymptotically stable critical
point.

3. If a is an isolated minimum of V or a saddle point of V , then a is an unstable
critical point.

Proof: Let y be a vector which is tangent to the level surface V −1(c) at the point x.
For any curve γ(t) in the level set V −1(c) with γ(0) = x and γ′(0) = y we have

0 =
d

dt
V (γ(t))|t=0 = 〈∇V (x) , y〉 , (3.108)

and so ∇V (x) is perpendicular to any tangent vector to the level set V −1(c) at all
regular points of V . This proves 1.

If x(t) is a solution of (3.107), then we have

d

dt
V (x(t)) = −〈∇V (x(t)) , ∇V (x(t))〉 ≤ 0 . (3.109)

If a is an isolated minimum of V , then consider the Liapunov function W (x) = V (x)−
V (a). We have LW (x) < 0 in a neighborhood of a and so, by Theorem 3.4.2, a is an
asymptotically stable equilibrium point. This proves 2. If If a is an isolated minimum
of V or a saddle point of V , we consider the function W (x) = V (a) − V (x). If a is a
isolated minimum W (x) is a Liapunov function and if a is a saddle point then W (x)
satisfy the conditions 1 and 3 of Theorem 3.4.3. In both case we have LW > 0 in a
neighborhood of a and thus, by Theorem 3.4.3, a is unstable. This proves 3.

Example 3.5.2 Let V : R2 → R be the function V (x, y) = x2(x− 1)2 + y2

2
. The the

gradient system is given by

x′ = −2x(x− 1)(2x− 1) ,

y′ = −y . (3.110)

There are 3 critical points (0, 0), (0, 1/2, 0), and (0, 1). From the form of V one
concludes that (0, 0) and (0, 1) are asymptotically stable with basins of attraction
{−∞ < x < 1/2 , −∞ < y < ∞} and {1/2 < x < ∞ , −∞ < y < ∞} respectively.
The critical point (1, 0) is unstable (saddle point). The solution with initial condi-
tions x(0) = 1 and y(0) = y0 satisfy (x(t), y(t)) → (0, 1). See figure 3.5.2 in the next
subsection.

We also have

Proposition 3.5.3 Let V : U → Rn (U an open set in Rn) be of class C2 and let
x′ = −∇V (x) be a gradient system. If a is a critical point, then the linearization
around A has only real eigenvalues.
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Proof: Let a be a critical point. Then the linearized system is given by the matrix
A = (aij) where

aij = − ∂2

∂xi∂xj
(a) . (3.111)

Since V is of class C2 we have aij = aji. Therefore A is a symmetric matrix and its
eigenvalues are real.

3.5.2 Hamiltonian systems

Let x = (x1, · · · , xn) ∈ Rn and y = (y1, · · · , yn) ∈ Rn and let H : U → R (U an an
open set of R2n) be a function of class C2. For mechanical systems x are the coordinates
of the particles and y are the momenta of the particles. The function H(x, y) is called
the energy or the Hamiltonian of the system.

A Hamiltonian system for the Hamiltonian H is a system of differential equations
of the form

x′i =
∂H

∂yi
i = 1, · · · , n ,

y′i = −∂H
∂xi

i = 1, · · · , n . (3.112)

A simple but very important property of Hamiltonian is conservation of energy

Proposition 3.5.4 Let H(x, y) be a function of class C2. Let (x(t), y(t)) be a solution
of the Hamilton equations (3.112), then H(x(t), y(t)) is constant.

Proof: We have

d

dt
H(x(t), y(t)) =

n∑
i=1

∂H

∂xi
x′i +

∂H

∂yi
y′i

=
n∑
i=1

∂H

∂xi

∂H

∂yi
− ∂H

∂yi

∂H

∂xi
= 0 . (3.113)

Hence H is constant along any solution.

This means that any solution (x(t), y(t)) stays on the level set {H(x, y) = c =
H(x(0), y(0))} of the Hamiltonian. If the level set of the Hamiltonian is compact, then
the solution exists for all positive and negative times.

Let z = (x, y) and define J : R2n → R2n as the linear map given by

J =

(
0 I
−I 0

)
. (3.114)
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where I is the n × n identity matrix. Note that we have JT = J−1 = −J . We can
rewrite (3.113) as

z′ = J−1∇H(z) . (3.115)

Theorem 3.5.5 Let U ⊂ R2n be an open set and H : U → R be of class C2. Then
the flow φt(z) = z(t, 0, z) for (3.115) satisfy

(
∂φt

∂z

)T
J

(
∂φt

∂z

)
= J . (3.116)

Remark 3.5.6 A map T : U → R2n (U ⊂ R2n open) which satisfies ∂T
∂x

T
J ∂T
∂x

= J is
called a symplectic transformation.

Proof: The derivative ∂φt

∂z
is the solution for the variational equation, which is

Ψ′(t) = J−1d
2H

dz2
(z(t, 0, z))Ψ(t) , Ψ(0) = I , (3.117)

where
d2H

dz2
=

(
∂2H

∂zi∂zj

)
1≤i,j≤n

. (3.118)

is a symmetric matrix. We have then

d

dt

(
∂φt

∂z

)T
J

(
∂φt

∂z

)
=

(∂φt
∂z

)T′ J (∂φt
∂z

)
+

(
∂φt

∂z

)T
J

(
∂φt

∂z

)′

=

(
∂φt

∂z

)T
d2H

dz2
(z(t, 0, z))J2

(
∂φt

∂z

)
+

(
∂φt

∂z

)T
d2H

dz2
(z(t, 0, z))

(
∂φt

∂z

)
= 0 . (3.119)

Since (3.116) holds for t = 0 it holds thus for all t.

A direct consequence of the symplecticity of the flow is

Theorem 3.5.7 Let U ⊂ R2n be an open set and H : U → R be of class C2. The flow
φt for (3.115) is volume preserving, i.e., for any A ⊂ Rn compact with ∂A negligible
we have

vol
(
φt(A)

)
= vol(A) . (3.120)
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Proof: The map φt is of class C1 by Theorem (2.6.6) and injective by the uniqueness of
solutions. Since detJ = 1, from Theorem 3.5.5 we have∣∣∣∣∣det

(
∂φt

∂x

)∣∣∣∣∣ = 1 . (3.121)

By the change of variables formula we have

vol
(
φt(A)

)
=
∫ ∫

φt(A)
dx dy =

∫ ∫
φt(A)

dx dy =
∫ ∫

A

∣∣∣∣∣det
∂φt

∂x

∣∣∣∣∣ dx dy = vol(A) .

(3.122)
and so φt preserves volume.

Remark 3.5.8 This can be derived directly from Liouville Theorem 2.1.6 (see home-
work). The property of symplecticity is a much stronger than volume preserving, at
least for n ≥ 1.

Remark 3.5.9 Because of the volume preserving property critical points of Hamilto-
nian systems are never asymptotically stable.

Theorem 3.5.10 Consider Hamilton’s equation (3.112) where H is of class C2. Let
a be a critical point for (3.112). If H(x, y) − H(a) is positive (or negative) in a
neighborhood of a then a is a stable critical point.

Proof: Without loss of generality we may assume that a = 0. By Proposition (3.5.4)
V (x, y) = H(x, y) −H(0) (or V (x, y) = H(0) −H(x, y)) is a Liapunov function with
LV = 0. The theorem follows immediately from item 1. of Theorem 3.4.2.

In mechanical systems, the Hamiltonian has (usually) the form H = T +W where
T is the kinetic energy and U is the potential energy. We have

T =
n∑
i=1

y2
i

2
, W = W (x) , (3.123)

in particular T is positive. The Hamiltonian equations have then the form (Newton’s
2nd law)

x′′i = −∇W (x) . (3.124)

Equilibrium solutions then correspond to

y = 0 , ∇W (x) = 0 . (3.125)

We have



CHAPTER 3. STABILITY ANALYSIS 102

Theorem 3.5.11 Let W : U → R (U ⊂ Rn an open set) be a function of class C2.
Assume that a be a critical point of of W , i.e., ∇W (a) = 0. If a is a local (strict)
minimum of W then a is a stable critical point for (3.124). If a is a local maximum of
W and W is nondegenerate, i.e. if the matrix(

∂2W

∂xi∂xj
(a)

)
(3.126)

is invertible, then a is an unstable critical point for (3.124).

Proof: Without restricting generality we can assume that a = 0 and that W (0) = 0.
The stability of strict minima follows from Theorem 3.5.10. For local maxima we
consider the function

V (x, y) =
n∑
i=1

xiyi (3.127)

and apply Theorem 3.4.3. It satisfies Condition 1 and 3 of this theorem. The Taylor
expansion of W around 0 gives

W (x) =
∑
ij

∂2W

∂xi∂xj
(0)xixj + o(‖x‖2) . (3.128)

and
(

∂2W
∂xi∂xj

(a)
)

is negative definite, i.e., there exists c > 0 such that

∑
ij

(
∂2W

∂xi∂xj
(0)

)
zizj ≤ −c

∑
j

z2
j . (3.129)

LV (x, y) =
n∑
i=1

(x′iyi + xiy
′
i) =

n∑
i=1

y2
i − xi

∂W

∂xi

=
n∑
i=1

y2
i − 2c

∑
ij

(
∂2W

∂xi∂xj
(0)

)
xixj + o(‖x‖2)

≥ ‖y2‖+ c‖x2‖+ o(‖x‖2) , (3.130)

and so LV > 0 is positive in a neighborhood of 0. Therefore 0 is unstable.

Example 3.5.12 Let H : R2 → R be given by H(p, q) = x2(x − 1)2 + y2

2
. The

Hamilton’s equation of motion are

x′′ = −2x(x− 1)(2x− 1) (3.131)

There are 3 critical points (0, 0), (0, 1/2), and (0, 1). Both (0, 0) and (1, 0) are local
minima of W (q) = q2(q − 1)2 and therefore they are stable. The point (0, 1/2) is a
nondegenerate local maximum of W (q) and thus is unstable. In figure 3.5.2 we show
the vector field for this Hamiltonian system as well as the vector field for the gradient
system with V = H. Note that they are perpendicular.
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Figure 3.5: The vector field for the gradient system with V (x, y) = x2(x− 1)2 + y2

2
and

the vector field for the Hamiltonian system H(x, y) = x2(x− 1)2 + y2

2
.

Example 3.5.13 Let H : R2 → R be given by H(x, y) = 1 − cos(x) + y2

2
. The

Hamiltonian equation are given by

x′′ = − sin(x) . (3.132)

The critical points are (nπ, 0), n ∈ bZ. For n even (0, nπ) is a local minimum of H(x, y)
and therefore stable. For n odd nπ is a local maximum of W (x) = 1 − cos(x), and
thus (0, nπ) is a saddle-point for H(x, y) and thus unstable. The vector field for this
Hamiltonian system is shown in figure 3.5.2.

-10 -7.5 -5 -2.5 0 2.5 5 7.5 10

-5

-2.5

2.5

5

-10 -7.5 -5 -2.5 0 2.5 5 7.5 10

-5

-2.5

2.5

5

Figure 3.6: The pendulum x′′ + sin(x) = 0 and the pendulum with friction x′′ + x′ +
sin(x) = 0.
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Example 3.5.14 Let us consider the mathematical pendulum with friction

x′′ + x′ + sin(x) = 0 . (3.133)

The corresponding vector field is shown in figure 3.5.2. We could us a linear stability
analysis to show that (0, 0) is asymptotically stable if ε > 0. Instead we use a Liapunov
function and estimate, at the same time, the size of its basin of attraction. We consider
the Liapunov function V (x, y) = H(x, y) + 1 = y2/2 + 1− cos(x). We have V (0, 0) = 0
and LV = −y2 ≤ 0. Since LV = 0 for y = 0 the Liapunov function is not strict and
we will use Theorem 3.4.7.

Fix a number c < 2 and let us consider the set

Pc = {(x, y) |V (x, y) ≤ c and |x| < π} . (3.134)

For c < 2, the set {V (x, y) ≤ c} consist of infinitely many disjoints closed regions given
by the conditions {|x− 2nπ| < π}, n ∈ Z. Thus Pc is compact.

We next show that there is no solution on which V is constant, except the 0 solution.
Let us assume that there is such a solution, then we have d

dt
V (x(t), y(t)) = −y2(t) =

0 and thus y(t) ≡ 0. Thus x′(t) = y(t) = 0 so x(t) is constant. We also have
y′ = − sin(x) = 0 and therefore q(t) ≡ 0. This is a contradiction. By Theorem 3.4.7
we conclude that (0, 0) is asymptotically stable and that Pc is contained in its basin of
attraction.



Chapter 4

Poincaré-Bendixson Theorem

We discuss in this chapter the long time limit of two dimensional autonomous systems.
In particular, we discuss in the problem of the existence of periodic solutions for two
dimensional systems. Closed orbits correspond to periodic solutions and according
Jordan closed curve theorem they separate R2 into two connected components, the
interior of and the exterior of the orbits. This makes the 2-dimensional case special
and much more tractable then the general case.

4.1 Limit sets and attractors

Let us consider the autonomous equation x′ = f(x) where x ∈ Rn and f(x) is locally
Lipschitz. We denote by γ(x0) the orbit corresponding to the solution with x(0) = x0.
In particular if x(t1) = x1 then we have γ(x0) = γ(x1). We denote by γ+(x0) the positive
orbit defined by x(t), t ≥ 0 and by γ−(x0) the negative orbit defined by x(t), t ≥ 0. We
have γ(x0) = γ+(x0) ∪ γ−(x0) and for a periodic solution we have γ+(x0) = γ−(x0).

We call a set M invariant, if x(0) ∈M implies that x(t) ∈M for all t ∈ R and we
call a set positively invariant , if x(0) ∈M implies that x(t) ∈M for all t ≥ 0.

Definition 4.1.1 A point x∗ is called a positive limit point of the orbit γ(x0) if there
exists an increasing sequence tn with limn→∞ tn =∞ such that x∗ = limn→∞ x(tn). A
negative limit point of γ(x0) is defined similarly.

Example 4.1.2 For the equation x′ = −2x and y′ = −y, for all orbits (0, 0) is the
unique limit point.

Example 4.1.3 If x′ = f(x) has a periodic orbit C, every point on the periodic orbit
is a positive and negative limit point of the orbit.

Definition 4.1.4 We denote by ω(γ) the set of all positive limit points for the orbit
γ, it is called the ω-limit set of γ. Similarly we denote α(γ) the set of all negative limit
points for the orbit γ (the α-limit set of γ).
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The basic properties of limit points and limit sets are summarized in

Theorem 4.1.5 The sets ω(γ) and α(γ) are closed and invariant. If the positive orbit
γ+ is bounded, then ω(γ) is a compact, connected and non-empty set. If γ+ = γ+(x0)
then we have limt→∞ dist (x(t, 0, x0) , ω(γ)) = 0. Analogous properties hold for γ− and
α(ω).

Proof: We first prove that ω(γ) is closed. Let {ym} be a convergent sequence in ω(γ)
with limit y. We show that y is a limit point. For any ε > 0, there exists M such that,
for any m ≥M , ‖ym − y‖ ≤ ε/2 and there exist sequences tmn with limn t

(m)
n =∞ such

that ‖x(t(m)
n )− ym‖ ≤ ε/2. This implies that y is a limit point.

We next show that ω(γ) is an invariant invariant. Let x∗ ∈ ω(γ), then there exists
a sequence {tn} with tn → ∞ such that limn x(tn) = x∗. For arbitrary t, we have
x(t+ tn, 0, x0) = x(t, 0, x(tn, 0, x0)) so that, using the continuous dependence on initial
conditions we have limn x(t + tn, x0) = x(t, 0, x∗). Therefore for all t, the orbit which
contains x∗ lies in ω(γ) and this proves invariance.

Let us assume that γ+ is bounded, then it has at least one accumulation point and
so ω(γ) is non empty. Since ω(γ) is closed it is also compact.

Since, for any t, limn x(t+ tn, 0, x0) = x(t, x∗) we have γ(x∗) ⊂ ω(γ(x0)). It follows
that limt→∞ dist (x(t, 0, x0) , ω(γ)) = 0. This also implies that ω(γ) is connected.

Definition 4.1.6 We say that a closed invariant set A is an attracting set if there is a
open neighborhood U of A such that for all points x0 ∈ U , x(t, 0, x0) ∈ U for all t > 0
and limt→∞ dist (x(t) , A) = 0. An attractor is an attracting set which contains a dense
orbit. A stable limiting cycle is an attractor which consists of a single periodic orbit.

Example 4.1.7 For a critical point a, we always have γ(a) = a and so {a} contains a
dense orbit. If a is is asymptotically stable then it is an attractor.

Example 4.1.8 Consider the system x′ = x−x3 and y′ = −y. The system has three
critical points (−1, 0) and (1, 0) which are asymptotically stable and (0, 0) which is a
saddle point. The set A = {y = 0 , −1 ≤ x ≤ 1} is an attracting set, every orbit is
attracted to A. But A does not contain a dense orbit and it is not an attractor.

Example 4.1.9 Consider the system

x′ = −y + x(1− x2 − y2) ,

y′ = x+ y(1− x2 − y2) . (4.1)

It is convenient to write the equation in polar coordinates, x = r cos(θ), y = r sin(θ).
A simple computation shows that (4.1) is equivalent to

r′ = r(1− r2) ,

θ′ = 1 . (4.2)
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We see that the origin is an equilibrium point of the system. The set r = 1 is invariant
and consists of a periodic orbit of period 2π. The origin is unstable and the flow spirals
outward (counterclockwise) for 0 < r < 1 and inward for r > 1. The circle {r = 1} is
a stable limiting cycle. Each point in the open neighborhood U = {a < r < A} where
a > 0 is attracted to the limiting cycle.

Example 4.1.10 Consider the system (in polar coordinates)

r′ = r(1− r) ,
θ′ = sin2(θ) + (1− r)3 . (4.3)

Both the origin and the circle {r = 1} are invariant set. The circle {r = 1} is the ω-
limit set for all orbits starting outside the origin and outside the circle. The invariant
set {r = 1} consists of four orbits given by θ = 0, θ = π, and the arcs 0 < θ < π, and
π < θ < 2π.

4.2 Poincaré maps and stability of periodic solu-

tions

We begin by considering a periodic system

x′ = f(t, x) , (4.4)

where f(t, x) is periodic of period p, f(t + p, x) = f(t, x). Let us assume that f is
of class C1 and that eq. (4.4) has a periodic solution xp(t) of period p. We linearize
around the periodic solution, i.e., we set y(t) = x(t)− xp(t) so that

y′(t) =
df

dx
(t, p(t))y + h(t, y) , (4.5)

where

h(t, y) = f(t, y + xp(t))− f(t, xp(t))−
df

dx
(t, p(t))y . (4.6)

Note that h(t, y) satisfies h(t, 0) = 0 and for any t0

lim
‖y‖→0

sup
t>t0

‖h(t, y)‖
‖y‖

= 0 . (4.7)

The linearized equation is

y′(t) =
df

dx
(t, p(t))y , (4.8)
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where A(t) = df
dx

(t, p(t)) is periodic of period p. By Floquet theorem, there exists a
periodic matrix P (t) and a matrix R such that the transformation y = P (t)z transform
the system into the form

z′ = Az + P−1(t)h(t, P (t)z) . (4.9)

The stability properties of the 0 solution of (4.9) are thus equivalent to the stability
properties of the periodic solution xp(t). From the stability/instability theorem 3.1.1
and 3.1.2 we conclude that the periodic solution xp(t) is stable if all eigenvalues of A
have negative real parts and that xp(t) is unstable if at least one eigenvalue of A has
positive real part.

This simple and appealing stability analysis however breaks down completely if
xp(t) is a periodic solution of the autonomous system

x′ = f(x) , (4.10)

where f is of class C1. In this case we have

y′(t) =
df

dx
(p(t))y + h(t, y) , (4.11)

where

h(t, y) = f(y + xp(t))− f(xp(t))−
df

dx
(p(t))y . (4.12)

and the linearized equation is

y′(t) =
df

dx
(p(t))y . (4.13)

As we have already noted in Section 2.5, x′p(t) is always a periodic solution of the
variational equation. This implies that R always has an eigenvalue 0 and therefore
xp(t) cannot be asymptotically stable. This can be also seen as follows: since f does
not depend on x, if xp(t) is a periodic solution, then yp(t) = xp(t+δt) is also a periodic
solution. For small δt, yp(t) is near xp(t) at t = 0 but |yp(t)− xp(t)| does not tend to
0 as t→∞.

For periodic solutions a much more natural concept of stability is to require that
that if C is the periodic orbit corresponding to xp(t) there exists δ > 0 such that if
‖xp(0)− x(0)‖ ≤ δ then

lim
t→∞

dist(x(t), C) = 0 . (4.14)

If, in addition, there exists a number α ∈ [0, p) such that limt→∞ ‖x(t)−xp(t+α)‖ = 0,
then x(t) is said to have asymptotic phase α. This means that the solution x(t) winds
around as it approaches the periodic solution xp(t).
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We also introduce the concept of the Poincaré map. Let C be a periodic orbit of
the autonomous system

x′ = f(x) , (4.15)

corresponding to the a periodic solution xp(t). Let us assume that the orbit passes
passes through the point x0. Let Ξ be an hyperplane perpendicular to the orbit C at
x0. If x ∈ Ξ is sufficiently close to x0, then the solution starting at x at t = 0 will cross
the hyperplane Ξ at a point P (x) near x0. The mapping x 7→ P (x) is called a Poincaré
map.

There is nothing special about hyperplanes and so the Poincaré map can be defined
in a similar way if Ξ is a smooth hypersurface through x0 which is not tangent to the
periodic orbit C.

Theorem 4.2.1 Let f : U → Rn (U an open set of Rn) be of class C1 and let
φt(x) denote the flow defined by the differential equation x′ = f(x). Assume that
xt(p) = φt(x0) is a periodic solution of period p and the orbit {φt(x0)}0≤t≤p is contained
in U . Let Ξ be the hyperplane orthogonal to C at x0, i.e.

Ξ = {x ∈ Rn , 〈(x− x0) , f(x0)〉 = 0} . (4.16)

Then there exists δ > 0 and a unique function τ(x) which is defined and continuously
differentiable in Nδ(x0) = {x ∈ Ξ ; ‖x− x0‖ < δ} so that τ(x0) = p and

φτ(x)(x) ∈ Ξ , for all x ∈ Nδ(x0) . (4.17)

Proof: This is an consequence of the smooth dependence of φt(x) with respect to x and
t (see Theorem 2.6.6) and from the implicit function theorem. We define the function

F (t, x) =
〈
(φt(x)− x0) , f(x0)

〉
. (4.18)

The function F (t, x) is of class C1 for (t, x) ∈ R× U . Since φp(x0) = x0 we have

F (p, x0) = 0 . (4.19)

Since ∂φt(x0)
∂t
|t=p = f(x0) we have

∂F

∂t
(p, x0) =

〈
∂φt(x0)

∂t
|t=p , f(x0)

〉
= 〈f(x0) , f(x0)〉 6= 0 , (4.20)

since x0 is not a critical point. From the implicit function theorem there exists a
function τ(x) of class C1 defined in a neighborhood Bδ(x0) such that τ(x0) = x0 and

F (τ(x), x) =
〈
(φτ(x)(x)− x0) , f(x0)

〉
= 0 , (4.21)
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i.e.,
φτ(x)(x) ∈ Ξ . (4.22)

This concludes the proof by taking Nδ(x0) = Bδ(x0) ∩ Ξ.

Theorem 4.2.1 implies that the Poincaré map P : Nδ(x0)→ Ξ given by

P (x) = φτ(x)(x) , (4.23)

is well defined and of class C1. Fixed points of the Poincaré map P (x) = x correspond
to periodic orbits φt(x) for (4.15). One can also show easily that the map P (x) is
invertible with an inverse of class C1 given P−1(x) = φ−τ(x)(x).

Example 4.2.2 For the system

x′ = −y + x(1− x2 − y2) ,

y′ = x+ y(1− x2 − y2) . (4.24)

or equivalently, in polar coordinates

r′ = r(1− r2) ,

θ′ = 1 . (4.25)

we can compute the Poincaré map explicitly. The solution to equations (4.25) with
r(0) = r0 and θ(0) = θ0 are

r(t, r0) =

[
1 +

(
1

r2
0

− 1

)
e−2t

]− 1
2

,

θ(t, θ0) = t+ θ0 . (4.26)

Let Ξ be the ray θ = θ0 through the origin, then Ξ is perpendicular to the closed orbit
r = 1. Any trajectory starting at (r0, θ0) at time 0 intersects Ξ at time 2π. Therefore
the Poincaré map is given by

P (r0) =

[
1 +

(
1

r2
0

− 1

)
e−4π

]− 1
2

. (4.27)

with P (1) = 1 and

P ′(r0) = e−4π 1

r3
0

[
1 +

(
1

r2
0

− 1

)
e−4π

]− 3
2

(4.28)

so that P ′(1) = e−4π < 1.
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For two-dimensional system, Ξ is a line segment intersecting C orthogonally. We
can parametrize the line Ξ by the distance s to the intersection point x0. We can
then write the Poincaré map as P = P (s) as a a function of s which is defined in a
neighborhood of the origin and satisfy P (0) = 0.

The stability of the periodic orbit C is determined by P ′(0). To see this let us
introduce the displacement function

d(s) = P (s)− s . (4.29)

Then d(0) = 0 and d′(s) = P ′(s)− 1. If d′(0) 6= 0 then, by continuity the sign of d(s)
will be the same in a neighborhood of 0. Thus if d′(0) < 0 (i.e P ′(0) < 1) therefore
the periodic orbit C is a stable limit cycle since the successive intersection of the orbit
with Ξ approach 0. Similarly if d′(0) < 0 (i.e., P ′(0) < 1) C is an unstable limit cycle.

Example 4.2.3 For the example 4.2.2 we have seen that P ′(1) < 1 which means that
the circle r = 1 is a stable limit cycle.

This analysis can be generalized easily to higher dimension. Suppose P that the
Poincaré P : Nδ(x0) → Ξ satisfies P (x0) = x0 and that the n − 1 eigenvalues of
the derivative P ′(x0) at x0 have all absolute value less than 1. Since the map P
is differentiable, P ′(x) is continuous and therefore for x sufficiently close to x0 all
the eigenvalues of P ′(x) have also absolute values less than 1. This implies that the
successive approximation of the orbits with Ξ approach 0.

It turns out that the eigenvalues of P ′(0) are closely related to the Floquet multi-
pliers of the linearization around the periodic orbit xp(t).

Theorem 4.2.4 Let f : U → Rn (U ⊂ Rn open) be of class C1 and let assume that
xp(t) is periodic orbit for x′ = f(x) which is contained in U . For δ sufficiently small
let P (x) : Nδ(x0) → Ξ be the Poincaré map for xp(t). Let λ1, · · · , λn−1 be the n − 1
eigenvalues of P ′(0) then λ1, · · · , λn−1, 1 are the Floquet multipliers for the linearized
equation

x′ = A(t)x , A(t) =
df

dx
(xp(t)) . (4.30)

Proof: Without restricting generality, by a change of variable, we can assume that
x0 = 0 and that f(0) = (0, · · · , 0, 1)T . This means that the hyperplane Ξ is the
hyperplane xn = 0.

The flow for x′ = f(x) is denoted by φt(x) and H(t, x) ≡ ∂
∂x
φt(x) satisfies the

variational equation

∂

∂t
H(t, x) =

df

dx
(φt(x))H(t, x) , H(0, x) = I (4.31)
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In particular for x = 0, H(t, 0) is the resolvent for (4.30). Since xp(t) is a solution
of x′ = f(x) then x′p(t) is a solution of (4.30) with initial condition x′p(0) = f(0). For
t = p, x′p(p) = f(0) and thus

H(t, 0)f(0) = f(0) , (4.32)

i.e., 1 is an eigenvalue of H(p, 0) with eigenvector f(0). By Floquet Theorem H(p, 0) =
C = epR and thus 1 is a Floquet multiplier with eigenvector f(0) = (0, · · · , 0, 1)T .
Therefore the last column of H(p, 0) is the vector (0, · · · , 0, 1)T .

Recall that the Poincaré map P (x) is defined to be the restriction to Ξ of the map
h(x) where H is given by

h(x) = φτ(x)(x) (4.33)

and τ(x) is the first time the solution hits the hyperplane Ξ (see Theorem 4.2.1). We
have

dh

dx
(x) =

∂

∂t
φτ(x)(x)

dτ

dx
(x) +

∂

∂x
φτ(x)(x)

=
∂

∂t
φτ(x)(x)

dτ

dx
(x) +H(τ(x), x) , (4.34)

and thus for x = 0 we obtain

dh

dx
(0) = f(0)

dτ

dx
(0) +H(p, 0) ,

=


0 · · · 0 0
...

. . .
...

...
0 · · · 0 0

∂τ
∂x1

(0) · · · · · · ∂τ
∂xn

(0)

 +


0

H̃(p, 0)
...
0

· · · 1

 (4.35)

By our choice of coordinates the derivative of P (x) consists of the first n− 1 rows and
columns of dh

dx
and therefore

dP

dx
(0) = H̃(p, 0) . (4.36)

where H̃(p, 0) is the matrix consisting of the first n − 1 rows and columns of H(p, 0).

Remark 4.2.5 It is in general very difficult to compute the Poincaré map explicitly,
and as the previous theorem shows, it is also very difficult to compute the derivative of
the Poincaré map since it amounts to computing the Floquet multipliers for a system
with periodic periodic coefficients. The concept of the Poincaré map is however very
useful, it plays for example a central role int the Poincaré-Bendixson theorem on the
existence of periodic orbits for planar systems.
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4.3 Bendixson criterion

We consider the autonomous system

x′ = f(x) (4.37)

where f is of class C1 in an open set U ⊂ R2. We derive a simple sufficient condition
criterion for a two dimensional not to have a periodic orbit.

Theorem 4.3.1 (Bendixson criterion) Suppose that the open D ⊂ R2 is simply
connected and f is of class C1. The equation (4.37) can have a periodic solution only
if div f changes sign in D or div f = 0 in D.

Proof: Suppose that we have a closed orbit C in D and let G be the interior of the
orbit C. By the divergence theorem (Gauss Theorem) we have,∫ ∫

G
divf dx =

∫
C
f ·ds =

∫
C

(f1dx2−f2dx1) =
∫
C

(
f1
dx2

dt
− f2

dx1

dt

)
dt = 0 (4.38)

where the last equality follows from the fact that the closed curve C can be parametrized
by a solution of (4.37). So the integral on the left side vanishes which implies that div f
either vanishes or changes sign in D.

Example 4.3.2 The Lienard equation is given x′′+f(x)x′+g(x) = 0 where f(x) and
g(x) are Lipschitz continuous. The vector fields h(x, y) = (y,−f(x)y− g(x))T satisfies
div f(x, y) = −f(x). If f(x) is either positive or negative then Theorem (4.3.1) implies
that there is no periodic solution.

Example 4.3.3 For the van der Pol equation x′′ + ε(x2 − 1)x′ + x = 0 we have
div f(x, y) = −ε(x2 − 1). So a periodic solution, if it exists, must intersect with the
lines x = 1 or x = −1.

4.4 Poincaré-Bendixson Theorem

In this section we prove

Theorem 4.4.1 Let f : U → R2 (U an open set of R2) be of class C1. Assume that
the positive orbit γ+ for the system

x′ = f(x) , (4.39)

is bounded and that the limit set ω(γ+) does not contain critical points. Then ω(γ+) is
a periodic orbit.
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We will split the proof of the theorem in a sequence of lemmas. We first introduce
the concept of a transversal line and regular points for (4.39).

Definition 4.4.2 A finite closed segment of a straight line l contained in U is transver-
sal for (4.39) if l does not contain any critical points of (4.39) and if the vector field f
is not tangent to l at any point of l.

Definition 4.4.3 A point x ∈ U is regular for (4.39) if it is not a critical point for
(4.39).

Lemma 4.4.4 Let x∗ be an interior point of a transversal l, then for any ε > 0, there
exists δ > 0 such that every trajectory passing through a point x with ‖x − x∗‖ ≤ δ
crosses l at some time t with |t| ≤ ε.

Proof: This follows from the continuity of the vector field f . Since l contains only
regular points, the vector field on l always points on the same side of l. A sufficiently
small neighborhood of l contains also only regular points. This implies that an orbit
starting close enough from l will actually crosses it for some positive or negative time.
The lemma follows then by the continuous dependence of the solution from initial
conditions.

Lemma 4.4.5 1. If a finite closed arc {x(t) : a ≤ t ≤ b} of a trajectory γ intersects
a transversal l, it does so at a finite number of points.

2. If γ is a periodic orbit which intersects l, it does intersect l only once.

3. The successive intersections with l form a monotonic sequence (with respect to
the order on the line l).

Proof: Let us assume that for t ∈ [a, b], x(t) intersects the transversal at infinitely many
points xn = x(tn). Then the sequence tn will have an accumulation point t∗ ∈ [a, b].
Passing to a subsequence, also denoted by {tn} we have that x(tn) converges to x(t∗)
in l. But on the other hand we have

lim
n→∞

x(tn)− x(t∗)

tn − t∗
= x′(t∗) = f(x(t∗)) . (4.40)

which is a vector tangent to l at x(t∗). Since x(tn), x(t∗) ∈ l this is a contradiction to
the fact that l is transversal. This proves 1 and thus a fine segment of an orbit meets
l finitely many times.

Let now x1 = x(t1) and x2 = x(t2) with t1 < t2 be two successive point of in-
tersection of the orbit with l. Suppose that x1 is distinct from x2. Then the arc
{x(t) : t1 ≤ t ≤ t2} together with the closed segment x1x2 on l forms a closed Jordan
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curve J . By Jordan closed curve Theorem J separates the plane into two regions, the
interior of J and the exterior of J . The points x(t) with t < t1 (and t close to t1) and
the points x(t) with t > t2 (and t close to t2) will be on the opposite sides of the curve
J . It, in fact, remains so for all times t < t1 and t > t2. Suppose for example x(t),
t > t2 is inside J . The orbit cannot cross J on the transversal because the flow points
inward on the transversal, it cannot cross either on the orbit part of J by uniqueness
of solutions. Therefore x(t) must remains inside J for all t > t2. A similar argument
holds if x(t), t < t1 is inside J .

From this 2 and 3 follows immediately.

This lemma gives some insight in the structure of possible ω-limit sets in R2.

Lemma 4.4.6 If an orbit γ and its ω-limit set ω(γ) have a point in common, then γ
is either a critical point or a periodic orbit.

Proof: Let x1 = x(t1) ∈ γ ∩ ω(γ). If x1 is a critical point then x(t) = x1 for all t ∈ R.
If x1 is a regular point, then we can find a transversal l such that x1 is an interior point
of l. Since x1 ∈ ω(γ), there exists a point x∗ = x(t∗) with, say, t∗ > t1 + 2 which is at
distance no more than δ from x1. By lemma (4.4.4) the orbits passing through x∗ will
intersect l at a time t2 > t1 + 1. If x2 = x1 then ω(γ) is periodic orbit. If x2 6= x1, then
the piece of orbit {x(t) ; t1 ≤ t ≤ t2} intersect l only at a finite number of points, by
lemma 4.4.5, item 1. By Lemma 1, item 3, the successive intersections of γ with l are
a monotone sequence which tend away from x1. This contradicts our assumption that
x1 ∈ ω(γ).

Lemma 4.4.7 If the ω-limit set ω(γ) of an orbit γ intersect a transversal l, it does
so in one point only. If x∗ is such an intersection point, we have ω(γ) = γ with γ
a periodic orbit or there exists a sequence tn with limn tn = ∞ and x(tn) tends to x∗

monotonically on l.

Proof: Suppose that ω(γ) intersects l in x∗. If the orbits γ passes through x∗ then γ
and γ(ω) have x∗ in common which is regular point. Thus, by lemma 4.4.6 ω(γ) is a
periodic orbit. If not, x∗ being in the ω-limit set, there exists a sequence {t′n} with
limn t

′
n =∞ such that limn x(t′n) = x∗. Then, by Lemma 4.4.4, there exists a sequence

tn with limn tn = ∞ such that x(tn) ∈ l and limn x(tn) = x∗ monotonically in l by
Lemma 4.4.5.

Now suppose that there exists another intersection point y∗ of ω(γ) with l. By the
same argument we can construct a sequence x(sn) which tends monotonically in l to
y∗. But in that case we can construct a sequence of intersection of the orbit with l
which is not monotone. This contradicts Lemma 4.4.5.
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Lemma 4.4.8 If ω(γ) contains no critical point and ω(γ) contains a periodic orbit C,
then ω(γ) = C.

Proof: Let us suppose ω(γ) \C is not empty. Since ω(γ) is connected, C must contain
a limit point x∗ of the set ω(γ) \ C. Let l be a transversal which contains x∗, from
lemma 4.4.7 it follows that that ω(γ) intersects l only at x∗. Since x∗ is a limit point
of ω(γ) \ C, then there exist a point y of ω(γ) \ C in arbitrarily small neighborhoods
of x∗. By Lemma 4.4.4 an orbit through y will intersect l, since y ∈ ω(γ) and ω(γ) is
an invariant set, an orbit through y belongs also to ω(γ) and this contradicts lemma
4.4.7.

With these preparations we can now conclude the proof of Theorem 4.4.1.

Proof of Theorem 4.4.1: Since γ+ is bounded, ω(γ+) is compact, connected and not
empty. If γ+ is a periodic orbit then, by lemma 4.4.8, γ+ = ω(γ+). Suppose γ+ 6=
ω(γ+). There exists an orbit C ⊂ ω(γ+) and the orbit C is contained in compact
bounded set F . Therefore the orbit C has itself a limit point x∗ which is in ω(γ+) since
ω(γ+) is closed. Let l be a transversal through x∗, then by Lemma 4.4.7, l intersects
ω(γ+) only at x∗. Since x∗ is a limit point of C, by Lemma (4.4.4), l must also intersects
C at some point which must be then x∗. This implies that C and ω(C) have a point
in common and so, by lemma 4.4.6, C must be a periodic orbit. By lemma 4.4.8 this
implies that ω(γ+) = C.

We can derive several consequences from Theorem (4.4.1). If ω(γ) is a periodic
orbit C, we call it a ω-limit cycle. We have seen that dist(x(t), ω(γ)) → 0 as t → ∞,
which means that the orbit spirals toward C.

Limit cycles possess a kind of (at least one-sided) stability.

Corollary 4.4.9 Let C be an ω-limit cycle. If C = ω(γ(x)), then there exists a neigh-
borhood O of x such that C = ω(γ(y)) for all y ∈ O. The set

{y |ω(γ(y)) = C} \ γ (4.41)

is an open set.

Proof: Let l be a transversal to C. Then there exists a line segment f in l, which is
disjoint from C and is bounded by x(t1) and x(t2) with t1 < t2 and such that x(t)
does not meet this segment for t1 < t < t2. Consider now the region A bounded one
side by C and on the other side by the closed curve consisting of the orbit segment
{x(t)t1 ≤ t ≤ t2} and the line segment f . This region is positively invariant and if
y ∈ A \ γ the orbit passing through y spirals toward C.

If there exists orbits attracted to C starting on both sides of C, then C is an
attractor.
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Corollary 4.4.10 Let K be a compact set which is positively invariant, then K con-
tains either a limit cycle or a critical point.

Proof: If K is positively invariant, then any orbit starting in K is bounded. The
corollary follows then from Theorem 4.4.1.

Corollary 4.4.11 Let C be a periodic orbit and let O be the open region in the interior
of C. Then O contains either an equilibrium point or a limit cycle.

Proof: The D = O ∪ C is positively and negatively invariant. If O contains no limit
cycle or critical point, then for all x ∈ U we must have by Poincaré-Bendixson Theorem

ω(γ(x)) = α(γ(x)) = C (4.42)

so the orbit spirals toward C both for positive and negative times. This is a contradic-
tion.

One can in fact show that 0 always contain a critical point.

4.5 Examples

The theorem of Poincaré-Bendixson implies that the existence of a positively invariant
set which does not contain any critical point, must contain some periodic orbit (limit
cycles). We consider three examples here.

Example 4.5.1 The first example we consider is

x′ = x− y − x3 ,

y′ = x+ y − y3 . (4.43)

Let us consider the function V = x2+y2

2
. We have

LV = x2 + y2 − x4 − y4 . (4.44)

If x2 + y2 < 1 then x2 < 1 and y2 < 1 and therefore x4 < x2 and y4 < y2. This
implies that for x2 + y2 < 1 we have LV > 0.

On the other hand we have x4 + y4 = (x2 + y2 − 2x2y2) and thus

LV = x2 + y2 + 2x2y2− (x2 + y2) ≤ 2(x2 + y2)− (x2 + y2)2 = (x2 + y2)(2− (x2 + y2)) .

Thus if x2 + y2 > 2 we have LV < 0.
This implies that the annular region A = {1 ≤ x2 + y2 ≤ 2} is positively invariant.

Any orbit which starts in this region stays in this region forever. It is not difficult to
see that the only critical point is the origin and therefore the annular region does not
contain a critical point. The Poincaré-Bendixson theorem implies the existence of a
periodic orbit contained in A, see figure 4.1
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Figure 4.1: The vector field and a solution for the equations (4.43)

We will consider a class of examples, the so-called Lienard equations, for which we
establish the existence of periodic orbits. More can be said on such systems with a finer
analysis, for example one can determine the number of periodic orbits. The Lienard
equation has the general form

x′′ + f(x)y + g(x) . (4.45)

where f(x) and g(x) are Lipschitz continuous.

Example 4.5.2 We consider van der Pol type equations

x′′ + (x2 − 1)x′ + x2n−1 , (4.46)

where n ≥ 1, i.e., f(x) = x2 − 1 and g(x) = x2n−1. It will be useful to introduce the
functions

F (x) =
∫ x

0
f(z) dz =

x3

3
− x , G(x) =

∫ x

0
g(x) =

x2n

2n
. (4.47)

We will show that a suitable ”annular region” around 0 is positively invariant. We
will do this using two suitably chosen Liapunov function.

We first consider the function

V (x, y) =
(y + F (x))2

2
+G(x) , (4.48)

We have

LV (x, y) = (y + F (x)) (−f(x)y − g(x)) + ((y + F (x))f(x) + g(x)) y

= −g(x)F (x) = −x2n−1(x3 − x) . (4.49)

The function F (x) = x3 − x is negative for 0 < x < 1 and positive for −1 < x < 0
and thus LV > 0 if |x| < 1 and x 6= 0. We choose a so small that the set {V (x, y) ≤
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a} is contained in the region {|x| ≤ 1}. Then the orbits starting on the boundary
{V (x, y) ≤ a} cannot enter this domain.

Next we consider the function

W (x, y) =
y2

2
+ (F (x)− arctan(x)) y +G(x) +

∫ x

0
f(z)(F (z)− arctan(z)) dz . (4.50)

It is not difficult to see that lim‖(x,y)‖→∞W (x, y) =∞ (look for example along the lines
y = αx). We have

LW (x, y) = (y + F (x)− arctan(x)) (−f(x)y − g(x))

+
((
f(x)− 1

1 + x2

)
y + g(x) + f(x)(F (x)− arctan(x))

)
y

= −(F (x)− arctan(x))g(x)− 1

1 + x2
y2 . (4.51)

We note that
lim

‖(x,y)‖2→∞
LW (x, y) = −∞ . (4.52)

This implies that there exists b0 such that on the level sets of {W (x, y) = b} for b ≥ b0,
the vector field points inward the level set. This implies that the system is dissipative,
all orbits starting outside the level sets {W (x, y) = b} eventually enter it and never
leave it again.

This implies that the annular shaped domain

A = {x ; V (x, y) ≥ a , W (x, y) ≤ b} (4.53)

is positively invariant. The only critical point is (0, 0) so that the Poincaré-Bendixson
theorem implies the existence of (at least) one periodic orbit in A. We have also proved
that every orbit starting at any point except (0, 0) will eventually enter the set A, see
figure 4.2.

A somewhat finer analysis shows that, for (4.46) there exist only one periodic orbit
which is a stable limiting cycle.

To conclude note that the same argument works for more general function f and
g. For example if we assume that there exists a < b < c such that

1. All the zeros of g are contained in (−a, a).

2. In (−b,−a) and (a, b) we have g(x)F (x) < 0

3. For x < −c and x > c we have g(x)F (x) > 0.

4. limx→∞G(x) =∞.
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Figure 4.2: The vector field and a solution for the equations (4.46) with n = 2

5. For large x, F (x) = x2n+1 + lower order terms.

then we have the existence of a periodic orbit. The number of periodic orbits depends
on the detailed behavior of F , in particular how many times it changes signs between
b and c.

Finally we consider an equation which models chemical reactions involved in the
breaking down of sugar in cells.

Example 4.5.3 Let us consider the equations

x′ = −x+ ay + x2y = f(x, y) ,

y′ = b− ay − x2y = g(x, y) , (4.54)

where a and b are positive constants.

y=b/(a+x^2)

y=x/(a+x^2)

(b , b/a)

Figure 4.3: The curves y = x/(a+ x2) y = b/(a+ x2) and the region A.
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We will be only interested in the region x ≥ 0, y ≥ 0. In a first step we will
construct a region in the positive quadrant such that the vector field always points
inward. The first step is to draw the curves f(x, y) = 0 and g(x, y) = 0, i.e. the curves
y = x/(a + x2) where x′ = 0 and y = b/(a + x2). These curves intersect only at the
point (x, y) = (b, b/a+ b2).

Let us consider now the region A bounded by the dotted line in figure 4.3 where the
diagonal line has slope −1. On the line segment between (0, 0) and (0, b/a) we have
x′ = ay > 0. On the line segment between (0, 0) and the point C we have y′ = b > 0.
On the line segment between (0, b/a) and (b, b/a) we have g < 0 so that y′ < 0. On the
vertical line segment between C until the intersection with the curve y = x/a+ x2 we
have f < 0 so that x′ < 0. On the diagonal line with slope −1 between (b, b/a) until
the intersection with the curve y = x/a+ x2 we should compare the relative sizes of x′

and y′. Let us consider x′ − (−y′). We find

x′ + y′ = b− x < 0

provided x > b. This implies that dy/dx < −1 and thus vector field points inward on
a line of slope −1.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.1

0.2
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0.4

0.5
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0.8
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1

1.1

1.2

b
T>0 stable fixed point

T<0 unstable fixed point 
and stable limit cycle

  
b

a
a

Figure 4.4: The regions in the (a, b) plane with a periodic orbit or a attracting fixed
point

Therefore on the boundary of the region A the flow always points inward and thus
A positively invariant.

We cannot conclude yet that there is periodic orbit since A contains a critical point.
However if the linearization at the critical point has only eigenvalues with positive real
parts, there exists a neighborhood of the critical point B such that the vector fields
points outward on the boundary of B. In this case the set A \B is positively invariant
and we can apply Poincaré-Bendixson and conclude that there exists a periodic orbit.
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We have
df

dx
=

(
−1 + 2xy a+ x2

−2xy −(a+ x2)

)
. (4.55)

and the critical point is (b, b/(a+ b2)).
Note that the determinant is (a + x2) which is always positive. The trace at the

critical point is given by

τ = −b
4 + (2a− 1)b2 + (a+ a2)

a+ b2
(4.56)

So the fixed point has two eigenvalues with negative real parts if τ > 0. The curve
τ = 0, see figure 4.3, is given by

b2 =
1

2

(
1− 2a±

√
1− 8a

)
(4.57)

and divide the positive quadrant in the (a, b)-plane into two regions: one with a stable
limit cycle and the other with a stable fixed point.
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