Some fact about sup, inf, limsup and liminf

1 Supremum and Infimum

For a set X of real numbers, the number ¢ = sup X, the supremum of X ( or least upper

bound of X) is defined by
1. Forallz € X, 2 <¢
2. For any € > 0 there exists x such that x > £ —e.

and the infimum of X inf X is defined similarly.

2 Sequences, accumulation points, limsup and lim inf

Let {z,}5°, be a sequence of real numbers. A point z is called an accumulation point of
if there exists a subsequence {x,, } which converges to z. A well-known theorem is

Theorem 2.1 Boltzano-Weierstrass Theorem Any sequence which is bounded above
(i.e there exists M such that x, < M for all n) has at least one accumulation point.

Note by the way that this theorem is what is needed to prove that compact sets in R or
R? are exactly the sets which are closed and bounded.

It is instructive to have a look at the proof.
Proof: Consider the set

X = {x; infinitely many x, are > z}.

This set is bounded and we define £ = sup X. The number ¢ is finite and by definition
for any € > 0 only finitely many z,, satisfy x,, > £ + ¢ and infinitely many z,, such that
x, > & — €. Therefore there are infinitely many x,, in the interval [ — €, £ + €].

For any integer k take ¢ = %, one construct the subsequence in the following inductive
way. Choose ny such z,, € [ — 1, £ + 1], then inductively choose nj > ny_; such that
Tn, € [§—1/k, £+ 1/k|. The sequence {z,, }3>, converges to {. B

This proof exhibits not any accumulation point, but the largest accumulation point
and it is called the limit superior of the sequence {z,}. We denote it by

¢ =limsupx,, = sup {z; infinitely many z,, are > x} .
Using sequences which are bounded below and the inf instead of the sup one defines
¢ =liminf z, = inf {z; infinitely many z, are < x} .

which is the smallest accumulation point of the sequence {x,}.



3 Properties of limsup and lim inf

Trivially we have
liminf z,, < limsup z,,

n—o0o n—oo

and
lim x, =2 if and only if liminfz, = limsupz, .
We also have
lim sup(x,, + y,) < limsup x,, + limsup y,
liminf(z, + y,) > liminf z,, + liminf y,

You should prove this and note that the inequalities can be strict (Find such examples).
The limsup and liminf can also be written as follows

limsupzx, = lim supz, = inf supzy.
n—o0 =00 k>n n2l p>p

liminfz, = lim inf x; = supinf z;.
n—oo n—oo k>n n>1 k>n

We prove this for lim sup. Note first that y, = supy,, 7 is a decreasing sequence, i.e.,
Yn+1 < Yn, and thus it is convergent and we have lim,, .. v, = inf,, . y,. Let £ denote
this limit, then for any € > 0 there exists N such that for all n > N we have

£ <yn=supzp < E+e.

k>n
Using the right inequality for n = N shows that at most finitely many z; are bigger than
¢ + €. On the other using the definition for the sup and left inequality for n = N we can
find n; > N such that x,, > £ —e. Using the left inequality for n; +1 we can find ny such

that z,, > £ — € and thus there exists infinitely many z; bigger than £ — €. This shows
that & = limsup,, . Tp.



