Math 523H–Homework 9

- 1. (a) Use a geometric series to write down a series for $\frac{1}{1+x^2}$.
 - (b) Use your result in (a) to write down a series expansion for $\arctan(x)$ for -1 < x < 1. Justify carefully all the steps.
- 2. Consider the sequences of functions on [0, 1]:

(a)
$$f_n(x) = \frac{nx}{(1+n^2x^2)^2}$$
, (b) $f_n(x) = \frac{n^2x}{(1+n^2x^2)^2}$

Compute the limits $\lim_{n\to\infty} f_n(x)$. Determine if the convergence is uniform (compute the maximum of f_n). Finally determine whether

$$\lim_{n \to \infty} \int_0^1 f_n(x) dx = \int_0^1 \lim_{n \to \infty} f_n(x) dx.$$

Hint: Use some calculus here.

- 3. Find a series for the function $g(t) = \int_0^x e^{-t^2} dt$ by using the series for the exponential function. Justify carefully all steps.
- 4. Suppose that $f_n(x)$ converges uniformly on [a, b]. Show that $F_n(x) = \int_a^x f_n(t) dt$ converges uniformly on [a, b].
- 5. Show that if g(x) is differentiable at x_0 and $g(x_0) \neq 0$ then 1/g(x) is differentiable at x_0 and compute the derivative of 1/g(x). Prove this in two ways:
 - (a) Using the definition of the derivative as a limit.
 - (b) Using our third formulation of the derivative (Caratheodory formulation) (g is differentiable if there exists a function $\phi(x)$ continuous at x_0 such that $g(x) = g(x_0) + \phi(x)(x x_0)$).
- 6. Using one of the equivalent definitions of the derivative show that $f(x) = \sqrt{x}$ is differentiable for x > 0 and that $g(x) = x^{1/3}$ is differentiable at $x \neq 0$. Show also that $x^{1/3}$ is not differentiable at x = 0.
- 7. Consider the function $f_n = x^n \sin(1/x^3)$ for $x \neq 0$ and f(0) = 0 where n is a nonnegative integer. For which values of n is f(x) (a) continuous? (b) differentiable? (c) twice differentiable? When are the derivatives continuous? *Hint: You may use* that $\sin(x)$ and $\cos(x)$ are differentiable and their derivatives without proving it.
- 8. The function $\sin(x)$ is bijective on $[-\pi/2, \pi/2]$ and $\arcsin(x)$ is its inverse function. Compute the derivative of $\arcsin(x)$. Hint: You may use the derivative of $\sin(x)$ without proving it.