Lecture 16: Expected value, variance, independence and Chebyshev inequality

Expected value, variance, and Chebyshev inequality. If X is a random variable recall that the expected value of $X, E[X]$ is the average value of X

$$
\text { Expected value of } X: \quad E[X]=\sum_{\alpha} \alpha P(X=\alpha)
$$

The expected value measures only the average of X and two random variables with the same mean can have very different behavior. For example the random variable X with

$$
P(X=+1)=1 / 2, \quad P(X=-1)=1 / 2
$$

and the random variable Y with

$$
[P(X=+100)=1 / 2, \quad P(X=-100)=1 / 2
$$

have the same mean

$$
E[X]=E[Y]=0
$$

To measure the "spread" of a random variable X, that is how likely it is to have value of X very far away from the mean we introduce the variance of X, denoted by $\operatorname{var}(X)$. Let us consider the distance to the expected value i.e., $|X-E[X]|$. It is more convenient to look at the square of this distance $(X-E[X])^{2}$ to get rid of the absolute value and the variance is then given by

$$
\text { Variance of } X: \operatorname{var}(X)=E\left[(X-E[X])^{2}\right]
$$

We summarizesome elementary properties of expected value and variance in the following

Theorem 1. We have

1. For any two random variables X and $Y, E[X+Y]=E[X]+E[Y]$.
2. For any real number $a, E[a X]=a E[X]$.
3. For any real number $a, \operatorname{var}(a X)=a^{2} \operatorname{var}(X)$.

Proof. For 1. one just needs to write down the definition. For 2. one notes that if X takes the value α with some probability then the random variable $a X$ takes the value $a \alpha$ with the same probability. Finally for 3 ., we use 2. and we have
$\operatorname{var}(X)=E\left[(a X-E[a X])^{2}\right]=E\left[a^{2}(X-E[X])^{2}\right]=a^{2} E\left[(X-E[X])^{2}\right]=a^{2} \operatorname{var}(X)$

Example: The $0-1$ random variable. Suppose A is an event the random variable X_{A} is given by

$$
X_{A}= \begin{cases}1 & \text { if } A \text { occurs } \\ 0 & \text { otherwise }\end{cases}
$$

and let us write

$$
p=P(A)
$$

The we have

$$
E\left[X_{A}\right]=0 \times P\left(X_{A}=0\right)+1 \times P\left(X_{A}=1\right)=0 \times(1-p)+1 \times p=p
$$

To compute the variance note that

$$
X_{A}-E\left[X_{A}\right]=\left\{\begin{array}{cl}
1-p & \text { if } A \text { occurs } \\
-p & \text { otherwise }
\end{array}\right.
$$

and so
$\operatorname{var}(X)=(-p)^{2} \times P\left(X_{A}=0\right)+(1-p)^{2} \times P\left(X_{A}=1\right)=p^{2}(1-p)+(1-p)^{2} p=p(1-p)$
In summary we have

The $0-1$ random variable

$$
\begin{array}{cl}
P(X=1)=p, & P(X=0)=(1-p) \\
E[X]=p, & \operatorname{var}(X)=p(1-p)
\end{array}
$$

Chebyshev inequality: The Chebyshev inequality is a simple inequality which allows you to extract information about the values that X can take if you know only the mean and the variance of X.

Theorem 2. We have

1. Markov inequality. If $X \geq 0$, i.e. X takes only nonnegative values, then for any $a>0$ we have

$$
P(X \geq a) \leq \frac{E[X]}{\alpha}
$$

2. Chebyshev inequality. For any random variable X and any $\epsilon>0$ we have

$$
P(|X-E[X]| \geq \epsilon) \leq \frac{\operatorname{var}(X)}{\epsilon^{2}}
$$

Proof. Let us prove first Markov inequality. Pick a positive number a. Since X takes only nonnegative values all terms in the sum giving the expectations are nonnegative we have

$$
E[X]=\sum_{\alpha} \alpha P(X=\alpha) \geq \sum_{\alpha \geq a} \alpha P(X=\alpha) \geq a \sum_{\alpha \geq a} P(X=\alpha)=a P(X \geq a)
$$

and thus

$$
P(X \geq a) \leq \frac{E[X]}{a}
$$

To prove Chebyshev we will use Markov inequality and apply it to the random variable

$$
Y=(X-E[X])^{2}
$$

which is nonnegative and with expected value

$$
E[Y]=E\left[(X-E[X])^{2}\right]=\operatorname{var}(X)
$$

We have then

$$
\begin{align*}
P(|X-E[X]| \geq \epsilon) & =P\left((X-E[X])^{2} \geq \epsilon^{2}\right) \\
& =P\left(Y \geq \epsilon^{2}\right) \\
& \leq \frac{E[Y]}{\epsilon^{2}} \\
& =\frac{\operatorname{var}(X)}{\epsilon^{2}} \tag{1}
\end{align*}
$$

Independence and sum of random variables: Two random variables are independent independent if the knowledge of Y does not influence the results of X and vice versa. This
can be expressed in terms of conditional probabilities: the (conditional) probability that Y takes a certain value, say β, does not change if we know that X takes a value, say α. In other words

$$
Y \text { is independent of } X \text { if } P(Y=\beta \mid X=\alpha)=P(Y=\beta) \text { for all } \alpha, \beta
$$

But using the definition of conditional probability we find that

$$
P(Y=\beta \mid X=\alpha)=\frac{P(Y=\beta \cap X=\alpha)}{P(X=\alpha)}=P(Y=\beta)
$$

or

$$
P(Y=\beta \cap X=\alpha)=P(X=\alpha) P(Y=\beta) .
$$

This formula is symmetric in X and Y and so if Y is independent of X then X is also independent of Y and we just say that X and Y are independent.
X and Y are independent if $P(Y=\beta \cap X=\alpha)=P(X=\alpha) P(Y=\beta)$ for all α, β

Theorem 3. Suppose X and Y are independent random variable. Then we have

1. $E[X Y]=E[X] E[Y]$.
2. $\operatorname{var}(X+Y)=\operatorname{var}(X)+\operatorname{var}(Y)$.

Proof. : If X and Y are independent we have

$$
\begin{align*}
E[X Y] & =\sum_{\alpha, \beta} \alpha \beta P(X=\alpha Y=\beta) \\
& =\sum_{\alpha, \beta} \alpha \beta P(X=\alpha) P(Y=\beta) \\
& =\sum_{\alpha} \alpha P(X=\alpha) \sum_{\beta} \beta P(Y=\beta) \\
& =E[X] E[Y] \tag{2}
\end{align*}
$$

To compute the variance of $X+Y$ we note first that if X and Y are independent so are $X-E[X]$ and $Y-E[Y]$ and that $X-E[X]$ and $Y-E[Y]$ have expected value 0 . We
find then

$$
\begin{align*}
\operatorname{var}(X+Y) & =E\left[((X+Y)-E[X+Y])^{2}\right] \\
& =E\left[((X-E[X])+(Y-E[Y]))^{2}\right] \\
& =E\left[(X-E[X])^{2}+(Y-E[Y])^{2}+2(X-E[X])(Y-E[Y])\right] \\
& =E\left[(X-E[X])^{2}\right]+\left[(Y-E[Y])^{2}\right]+2[E(X-E[X])(Y-E[Y])] \\
& =E\left[(X-E[X])^{2}\right]+\left[(Y-E[Y])^{2}\right]+2[E(X-E[X]] E[Y-E[Y]] \\
& =E\left[(X-E[X])^{2}\right]+\left[(Y-E[Y])^{2}\right] \\
& =\operatorname{var}(X)+\operatorname{var}(Y) \tag{3}
\end{align*}
$$

Exercise 1: What does Chebyshev say about the probability that a random variable X takes values within an interval of size k times the variance of X centered around the mean of X ?

Exercise 2:

1. Let $r>1$ be a real number. Consider the random variable X which takes values r with probability p and $1 / r$ with probability $1-p$. Compute the expected value $E[X], E\left[X^{2}\right]$ and the variance of X.
2. A very simple model for the price of a stock suggests that in any given day (independently of any other days) the price of a stock q will increase by a factor r to $q r$ with probability p and decrease to q / r with probability $1-p$. Suppose we start with a stock of price 1. Find a formula for the mean and the variance of the price of the stock after n days. Hint: Use n copies of the random variable in part 1 .
