Ruelle-Lanford functions for quantum spin systems

Yoshiko Ogata
Graduate School of Mathematics, University of Tokyo, Japan

Luc Rey-Bellet
Department of Mathematics and Statistics, University of Massachusetts, USA

Abstract
We prove a large deviation principle for the expectation of macroscopic observables in quantum (and classical) Gibbs states. Our proof is based on Ruelle-Lanford functions [20, 34] and direct subadditivity arguments, as in the classical case [23, 32], instead of relying on Gärtner-Ellis theorem, and cluster expansion or transfer operators as done in the quantum case in [21, 13, 27, 22, 16, 28]. In this approach we recover, expand, and unify quantum (and classical) large deviation results for lattice Gibbs states. In the companion paper [29] we discuss the characterization of rate functions in terms of relative entropies.

1 Introduction
In a large physical system in thermal equilibrium, macroscopic observables, such as the energy per unity volume, magnetization per unit volume, and so on, have, as a rule, a distribution which is very sharply concentrated around their equilibrium mean value. The fluctuations of such observables are expected to be exponentially small in the volume $|\Lambda|$ of the physical domain except at a first phase order phase transition where coexisting phases can induce macroscopically large fluctuations.

In classical mechanics systems this problem is mathematically very well-understood and very general large deviations theorems have been proved both for systems on a lattice or in the continuum see [20, 34, 30, 12, 6, 10, 14, 15, 23, 32, 33].

For quantum mechanical systems the problem of large deviations has, in comparison, received little attention and is only partially understood. The difficulty lies, partly, in the non-commutativity of quantum mechanical observables but at a deeper level, in the lack of control on the boundary effects in quantum mechanics. Known bulk/boundary estimates are sufficient to prove the existence

\footnote{email: yoshiko@ms.u-tokyo.ac.jp. Supported by JSPS Grant-in-Aid for Young Scientists (B), Hayashi Memorial Foundation for Female Natural Scientists, Sumitomo Foundation, and Inoue Foundation.}

\footnote{email: luc@math.umass.edu, Supported by NSF, Grant DMS-0605058.}
of thermodynamic functions see e.g., \[35, 19, 5, 36\] but they are, so far, not sufficient to prove general large deviation results, especially at low temperatures for spatial dimension more than 1. A number of quantum large deviation results have been proved in the past few years \[31, 21, 13, 22, 16, 17, 7, 28, 8\], (see also \[4\] for an information-theoretic interpretation of relative entropy). Common to all these papers is that the large deviation results are obtained by an application of Gärtner-Ellis theorem. In this paper we take an alternative route to large deviation results using direct subadditivity arguments which go back to the seminal paper of Lanford \[20\] based on previous results by Ruelle \[34\] (for a clear exposition of this approach in our context and further references see \[23\]). This approach is particularly useful if the logarithmic moment generating functions (i.e., a suitable free energy functional) lack smoothness in which case Gärtner-Ellis theorem cannot be applied directly. The subadditivity argument, by comparison, provide automatically the large deviation lower bounds. In this paper, using this approach, we recover, unify, and extend the known large deviation results for quantum (and classical) spin systems. In addition the proofs given here are short and self-contained.

This paper is organized as follows. In section 2 we give a brief exposition of the road to large deviation via subadditivity arguments, which amounts to proving the existence of the Ruelle-Lanford function which is an Boltzmann entropy-like functional. In section 3 we recall the elements of the quantum spin system formalism needed in the paper and we introduce the bulk/boundary estimates needed on the state of quantum systems. In section 4 we prove large deviation theorems for four different cases: (a) Commuting observables, (b) Classical observables, (c) Finite-range observables in dimension 1. The discussion of the rate functions and their characterization in terms of relative entropies is in the companion paper \[29\].

2 Ruelle-Lanford functions

Let \(X\) be a complete metric space, let \(\{\mu_n\}\) be a sequence of Borel probability measures on \(X\), and let \(\{v_n\}\) an increasing sequence of positive numbers with \(\lim_{n \to \infty} v_n = +\infty\). We say that \(\mu_n\) satisfies a large deviation principle (LDP) on the scale \(v_n\) if there exists a function \(I : X \to [0, \infty]\), lower semicontinuous and with compact level sets, such that for any closed set \(C\)

\[
\limsup_{n \to \infty} \frac{1}{v_n} \log \mu_n(C) \leq - \inf_{x \in C} I(x),
\]

and for any open set \(O\)

\[
- \inf_{x \in O} I(x) \leq \liminf_{n \to \infty} \frac{1}{v_n} \log \mu_n(O).
\]

The function \(I\) is called the rate function for the LDP.

In statistical mechanics applications the measures \(\mu_n\) are often distributions of sums of \(\mathbb{R}^d\) or \(\mathbb{R}^{dL}\) valued weakly dependent random variables. One standard
approach to prove an LDP is to combine the exponential Markov inequality
for the upper bound (2.1) and a change of measure and ergodicity argument
for the lower bound (2.2) (see e.g. the proofs of Cramer and Gärtner-Ellis
theorem in [9]). In the presence of phase transitions, i.e., lack of ergodicity
with respect to spatial translation, additional arguments are needed to provide
a lower bound. For example, in [12], the lower bound for the LDP for classical
lattice Gibbs states is obtained by using the Shannon McMillan theorem and
an approximation argument by ergodic states.

Another route to LDP’s using subadditivity arguments, much in the spirit of
statistical mechanics, was pioneered in a remarkable paper by Lanford [20], itself
based on earlier work by Ruelle [35]. We follow closely here the presentation in
[23], see also [32].

For Borel sets \(B \) let us define the set functions

\[
\overline{m}(B) = \limsup_{n \to \infty} \frac{1}{v_n} \log \mu_n(B), \quad \underline{m}(B) = \liminf_{n \to \infty} \frac{1}{v_n} \log \mu_n(B). \tag{2.3}
\]

One has the elementary properties

1. For any Borel set \(B \) we have \(-\infty \leq \underline{m}(B) \leq \overline{m}(B) \leq 0\).
2. If \(B_1 \subseteq B_2 \) then \(\underline{m}(B_1) \leq \underline{m}(B_2) \) and \(\overline{m}(B_1) \leq \overline{m}(B_2) \).
3. For all \(B_1, B_2 \) we have \(\overline{m}(B_1 \cup B_2) = \max\{\overline{m}(B_1), \overline{m}(B_2)\} \).

The property 3 is an key property in large deviations and is usually refereed to
as the principle of the largest term: large deviations occur in the least unlikely
way of all possible ways.

Let \(B_\varepsilon(x) \) denote the ball of radius \(\varepsilon \) centered at \(x \) and let us define

\[
\overline{s}(x) = \inf_{\varepsilon} \overline{m}(B_\varepsilon(x)), \quad \underline{s}(x) = \inf_{\varepsilon} \underline{m}(B_\varepsilon(x)). \tag{2.4}
\]

Definition 2.1 The pair \((\mu_n, v_n)\) has a Ruelle-Lanford function (RL-function)
\(s(x) \) if

\[
\overline{s}(x) = \underline{s}(x),
\]

for all \(x \in X \). In this case we set \(s(x) = \overline{s}(x) = \underline{s}(x) \).

The next proposition is standard and shows that the existence of RL-function
(almost) implies the existence of a LDP.

Proposition 2.2 The Ruelle-Lanford function \(s(x) \) is upper semicontinuous
and

\[
\underline{m}(O) \geq \sup_{x \in O} s(x), \quad O \text{ open} \tag{2.5}
\]

\[
\overline{m}(K) \leq \sup_{x \in K} s(x), \quad K \text{ compact} \tag{2.6}
\]
Proof: (sketch) The upper semicontinuity follows from the definition. The lower bound is immediate: For any \(x \in O \) and \(\varepsilon \) sufficiently small we have \(m(O) \geq m(B_\varepsilon(x)) \) and thus \(m(O) \geq g(x) = s(x) \) for all \(x \in O \).

To prove the upper bound, given \(\varepsilon > 0 \) we cover the compact set \(K \) by \(N = N(\varepsilon) \) balls \(B_\varepsilon(x_l) \) with centers in \(x_l \in K \). Using properties 2. and 3. we have
\[
m(K) \leq m(\cup_{l=1}^{N} B_\varepsilon(x_l)) \leq \max_{l} m(B_\varepsilon(x_l)) \leq \sup_{x \in K} m(B_\varepsilon(x)).
\]
Since \(\varepsilon \) is arbitrary the upper bound follows. \(\blacksquare \)

The statement in Proposition 2.2 is usually referred to as a weak large deviation principle since the upper bound holds only for compact sets. In the problems discussed in this paper the probability measures \(\mu_n \) are supported uniformly on compact sets and the previous lemma yields immediately a large deviation principle with rate function \(-s(x)\). More generally one obtains a large deviation principle by combining Proposition 2.2 with a proof that the sequence of probability measures \(\mu_n \) is exponentially tight (see e.g. [9], Section 1.2).

To identify the rate function we use a standard large deviation result

Proposition 2.3 (Laplace-Varadhan’s Lemma). Suppose that \(\mu_n \) satisfies a large deviation principle on the scale \(v_n \) with rate function \(I(x) \). Let \(f \) be any continuous function and suppose that for some \(\gamma > 1 \) we have the moment condition \(\limsup_{n \to \infty} \frac{1}{v_n} \log \mu_n \left(e^{v_n f(x)} \right) < \infty \). Then
\[
\lim_{n \to \infty} \frac{1}{v_n} \log \mu_n \left(e^{v_n f(x)} \right) = \sup_x \left(f(x) - I(x) \right).
\]

If \(X = \mathbb{R}^n \) and \(f(x) = \alpha \cdot x \) we obtain
\[
e(\alpha) \equiv \lim_{n \to \infty} \frac{1}{v_n} \log \mu_n \left(e^{v_n \alpha \cdot x} \right) = \sup_x \left(\alpha \cdot x + s(x) \right),
\]
i.e., the moment generating function of \(\mu_n \) is the Legendre transform of \(-s(x)\). If, in addition, we know, a priori, that the rate function \(s(x) \) is concave then by convex duality we obtain that
\[
s(x) = \inf_{\alpha} \left(e(\alpha) - \alpha \cdot x \right),
\]
that is, the rate function is the Legendre transform of the logarithmic moment generating function. Note that in our examples the moment condition will be trivially satisfied.

3 Quantum lattice systems

3.1 Interactions and states

We introduce some notations and briefly recall the mathematical framework for quantum spin systems, [19, 36, 5, 3].
C*-algebras: Let \mathcal{A} be a finite-dimensional C*-algebra. For any finite subset $\Lambda \subset \mathbb{Z}^d$ let $\mathcal{O}_\Lambda = \otimes_{x \in \Lambda} \mathcal{O}_x$ where \mathcal{O}_x is isomorphic to \mathcal{A}. If $\Lambda \subset \Lambda'$ there is a natural embedding \mathcal{O}_Λ into $\mathcal{O}_{\Lambda'}$ and the algebras $\{\mathcal{O}_\Lambda\}_{\Lambda \subset \mathbb{Z}^d, \text{finite}}$ form a partially ordered family of matrix algebras. The *algebra of observables* for the infinite system is given by the C*-inductive limit \mathcal{O} of $\cup_{\Lambda \subset \mathbb{Z}^d, \text{finite}} \mathcal{O}_\Lambda$.

States: Let ω be a state on \mathcal{O}, i.e., ω is a positive, normalized linear functional on \mathcal{O}. Let $\{\tau_x\}_{x \in \mathbb{Z}^d}$ denote the group of spatial translations. A state ω is called *translation invariant* if $\omega(\tau_x A) = \omega(A)$ for all $x \in \mathbb{Z}^d$ and all $A \in \mathcal{O}$. The action of \mathbb{Z}^d on \mathcal{O} is asymptotically abelian [5] and thus the set of translation invariant states is a simplex. We say that a state is *ergodic* if it is an extremal point of this simplex.

Classical subalgebras and states: A standard probabilistic setting is recovered by considering commutative (sub)algebras. Let $\mathcal{A}^{(cl)}$ be an abelian subalgebra of \mathcal{A} with $N = \dim \mathcal{A}^{(cl)}$. For finite subsets Λ of \mathbb{Z}^d let $\mathcal{O}_\Lambda^{(cl)} = \otimes_{x \in \Lambda} \mathcal{O}_x^{(cl)}$ with $\mathcal{O}_x^{(cl)}$ isomorphic to $\mathcal{A}^{(cl)}$. We denote by $\mathcal{O}^{(cl)}$ the inductive limit of $\cup_{\Lambda \subset \mathbb{Z}^d, \text{finite}} \mathcal{O}_\Lambda^{(cl)}$. The commutative algebra $\mathcal{O}^{(cl)}$ can be identified with $C(\mathcal{L})$ where $\mathcal{L} = \{1, \cdots, N\}^{\mathbb{Z}^d}$ with product topology is called a *classical C*-algebra. The restriction of any state ω on \mathcal{O} gives a normalized linear functional $\omega^{(cl)}$ on $\mathcal{O}^{(cl)}$.

Interactions and Hamiltonians: An *interaction* $\Psi = \{\psi_X\}_{X \subset \mathbb{Z}^d, \text{finite}}$ is a map from the the finite subsets of \mathbb{Z}^d to selfadjoint elements ψ_X in \mathcal{O}_X. We will assume throughout this paper that Ψ is translation invariant, i.e., $\tau_x(\psi_X) = \psi_{X+x}$ for any $X \subset \mathbb{Z}^d$ and any $x \in \mathbb{Z}^d$. An interaction Ψ is *classical* if there exists a classical C*-subalgebra $\mathcal{O}^{(cl)}$ such that $\psi_X \in \mathcal{O}^{(cl)}$ for all $X \subset \mathbb{Z}^d$.

We equip translation invariant interactions Ψ with the norm

$$\|\Psi\| = \sum_{X \geq 0} |X|^{-1} \|\psi_X\|,$$

where $|X|$ is the cardinality of the set X and denote by \mathcal{B} the corresponding Banach space. To any interaction $\Psi \in \mathcal{B}$ we associate *Hamiltonians (or macroscopic observables)* $K_\Lambda = K_\Lambda(\Psi)$: For $\Lambda \subset \mathbb{Z}^d$ finite we define

$$K_\Lambda = \sum_{X \subset \Lambda} \psi_X.$$

Furthermore to any $\Psi \in \mathcal{B}$ we associate an observable in \mathcal{O} by

$$A_\Psi = \sum_{X \geq 0} \frac{1}{|X|} \psi_X.$$
When we consider Gibbs state, two kinds of interactions Ψ and Φ will be considered. The interaction Ψ corresponds to the observables while Φ defines the Gibbs state. We denote by K_{Λ} the local Hamiltonian associated with Ψ and by H_{Λ} associated with Φ.

Large deviations: For $n \in \mathbb{N}$ let $\Lambda(n) = \{ z \in \mathbb{Z}^d ; 0 \leq z_i \leq n - 1 \}$ denote the cube with $|\Lambda(n)| = n^d$ lattice points and left hand corner at the origin. If ω is an ergodic state then the von Neumann ergodic theorem implies that

$$\lim_{n \to \infty} \frac{1}{|\Lambda(n)|} K_{\Lambda(n)} = \omega(A_{\Psi})$$

strongly in the GNS representation and it is natural to investigate the large deviation properties, on the scale $v_n = |\Lambda(n)|$, of the sequence of Borel measures on \mathbb{R}

$$\mu_n(A) \equiv \omega(\text{I}_A (|\Lambda(n)|^{-1} K_{\Lambda(n)}))$$

where A is a Borel set and $\text{I}_A(H)$ denotes the spectral projection onto the eigenspace of H spanned by the eigenvalues contained in the set A. We interpret the $\mu_n(A)$ as the probability that the observables $|\Lambda(n)|^{-1} K_{\Lambda(n)}$ takes value in A if the system is in the state ω.

3.2 Asymptotically decoupled states

The states we consider in this paper obey a property of weak dependence between disjoint regions of the lattice. We follow here the terminology used in [32] for the classical case.

Let $C(m)$ be an arbitrary cube of side length m and let us denote by $C_r(m)$ the cube of side length $m + 2r$ centered at the same point of \mathbb{Z}^d as $C(m)$.

Definition 3.1 A state ω on \mathcal{O} is asymptotically decoupled with parameters g and c if

1. There exist a function $g: \mathbb{N} \to \mathbb{N}$ with $\lim_{m \to \infty} g(m)/m = 0$ and a function $c: \mathbb{N} \to [0, \infty)$ with $\lim_{m \to \infty} c(m)/|C(m)| = 0$.

2. For any cube $C(m)$, $m \in \mathbb{N}$, any nonnegative $A \in \mathcal{O}_{C(m)}$, any nonnegative $B \in \mathcal{O}_{C_r(m)}$ we have

$$e^{-c(m)} \omega(A) \omega(B) \leq \omega(AB) \leq e^{c(m)} \omega(A) \omega(B).$$

Examples of asymptotically decoupled states are

(a) **Product states.** Any product state ω_0 is asymptotically decoupled with parameters $c = g = 0$.

(b) **Classical Gibbs states.** Let $\mathcal{O}^{(cl)}$ be a classical C^*-algebra and let Φ be a classical translation invariant interaction such that $\|\Phi\|_0 = \sum_{x \geq 0} \|\phi_x\|$ is finite. A Gibbs state for the interaction Φ is a probability measure $\omega^{(\Phi)}$ which satisfies
the DLR equation (see e.g. [35, 36]). Using the DLR equation one proves easily (see e.g. [23], Section 9) that for any positive $A \in O_C(m)$ we have

$$e^{-c(m)}\omega(\Phi)(A) \leq \frac{\text{tr}(Ae^{-H})}{\text{tr}(e^{-H})} \leq e^{c(m)}\omega(\Phi)(A)$$ \hspace{1cm} (3.1)

with $c(m) = \|W_{C(m)}\|$ where $W_{C(m)}$ is the boundary interaction $W_{C(m)} = \sum_{x \in C(m), x \neq \emptyset} \phi_X$. This implies easily that $\omega(\Phi)$ is asymptotically decoupled if $\|\Phi\|_0 < \infty$.

(c) **Quantum KMS states.** Let Φ be a translation invariant interaction. A KMS state for the interaction Φ is a state which satisfies the KMS condition or equivalently the Gibbs condition which is a quantum analog of the DLR equation (see e.g. [5, 36] and [3] for an up-to-date presentation) It is not known if KMS-Gibbs states are asymptotically decoupled, in general. Let us assume however that [1, 2] either

(i) $d = 1$ and Φ finite range (i.e., for some $R > 0$ diam$X > R$ implies $\phi_X = 0$),

or

(ii) d arbitrary and $\|\Phi\|_\lambda \equiv \sum_{X \neq \emptyset} e^{\lambda |X|} \|\phi_X\|$ is sufficiently small, then one can show that for a Gibbs-KMS state $\omega(\Phi)$ and $A \in O_C(m)$ we have the bound (3.1) where $c(m) = C(\Phi) \sum_{x \in C(m), x \neq \emptyset} \|\phi_X\|$. Contrary to the classical case the bound is highly nontrivial to prove and relies on the Gibbs condition, Araki perturbation theory, and control of imaginary-time dynamics. This bound implies that $\omega(\Phi)$ is asymptotically decoupled.

(d) **Markov measures.** Let ω be a stationary Markov chain on a finite state space with transition matrix Q and invariant probability q. Then ω is asymptotically decoupled if and only if Q is irreducible and aperiodic (i.e. mixing). If m is the smallest integer such that Q^m has strictly positive entries then the parameters are

$$g(m) = m - 1, \quad c(n) = \sup_{\sigma_1, \sigma_2} \left| \log \frac{Q^m(\sigma_1, \sigma_2)}{q(\sigma_2)} \right|.$$

(e) **Finitely correlated states.** These states are a non-commutative generalization of Markov measures and are asymptotically decoupled if and only if they are mixing which occur under suitable conditions similar to the aperiodicity condition for Markov measures. See [18, 11, 28] for details.

4 Quantum large deviations theorems

We prove several large deviations theorems for quantum states (in order of increasing difficulty) by showing the existence of concave RL-functions. This unifies, simplifies and extend a number of quantum large deviation results which have been proved with different techniques (Gärtner-Ellis Theorem via transfer
operators, cluster expansions, etc.). Our proof have the advantage of being fairly short, self-contained, to apply in some situations where the rate function is not smooth.

4.1 Preliminaries

In this section we prove an energy estimate used throughout the paper and explain the strategy (after [23]) used to prove the existence of a concave Ruelle-Lanford function.

The first fact is a very slight variation on standard bulk/boundary energy estimate, see e.g. [36, 5, 32]. Given integers \(n \) and \(m \) and a function \(g(m) \) such that \(\lim_{m \to \infty} g(m)/m = 0 \) we choose \(k \) to be largest even integer such that

\[
n = k(m + 2g(m)) + r, \quad 0 \leq r < 2(m + 2g(m)),
\]

(having \(k \) even will be convenient in the sequel). We next decompose the cube \(\Lambda(k(m + 2g(m))) \) into \(k^d \) pairwise disjoint and contiguous cubes \(\tilde{C}_j \), each of which are each translates of \(\Lambda(m + 2g(m)) \) and then further divide each cube \(\tilde{C}_j \) into a cube \(C_j \) which is centered at the same point as \(\tilde{C}_j \) and is a translate of \(\Lambda(m) \) and a ”corridor” \(\tilde{C}_j \setminus C_j \) of width \(g(m) \). We shall need estimates on the difference between the Hamiltonian \(K_{\Lambda(n)} \) and the ”decoupled” Hamiltonian for the collection of cubes \(C_j \), i.e. \(\sum_{j=1}^{k^d} K_{C_j} \).

Lemma 4.1 Let \(\Psi \) be an interaction with \(\| \Psi \| = \sum_{X \ni 0} |X|^{-1} \| \psi_x \| < \infty \). Then there exists a function \(F(m) = F(m, \Psi) \) with \(\lim_{m \to \infty} F(m) = 0 \), such that

\[
\limsup_{n \to \infty} \frac{1}{|\Lambda(n)|} \left\| \sum_{j=1}^{k^d} K_{C_j} \right\| \leq F(m). \quad (4.1)
\]

We will also use an immediate consequence of Lemma 4.1

Corollary 4.2 Let \(\Psi \) be an interaction with \(\| \Psi \| < \infty \). Then there exists a function \(F(m) = F(m, \Psi) \) with \(\lim_{m \to \infty} F(m) = 0 \), such that

\[
\limsup_{n \to \infty} \left\| \frac{1}{|\Lambda(n)|} \sum_{j=1}^{k^d} K_{C_j} - \frac{1}{|\Lambda(km)|} \sum_{j=1}^{k^d} K_{C_j} \right\| \leq F(m). \quad (4.2)
\]

Proof of Lemma 4.1: To simplify notation we set \(l = m + 2g(m) \) in the proof. If \(D = \{ x \in \mathbb{Z}^d; a_i \leq x_i < a_i + l \} \) is a cube of side length \(l \) and \(r \in \mathbb{N} \) such that \(r < l/2 \) we denote \(D_r = \{ x \in \mathbb{Z}^d; a_i + r \leq x_i < a_i + l - r \} \) the cube of side length \(l - 2r \) centered at the same point as \(D \).
Let us consider two cubes $D \subset D' \subset \mathbb{Z}^d$. We have

\[
\|K_{D'} - K_D\| \leq \sum_{X \subset D'} \sum_{x \notin X} \frac{1}{|X|} \|\psi_X\| \\
\leq \sum_{x \in D' \setminus D_r} \sum_{X \ni x} \frac{1}{|X|} \|\psi_X\| + \sum_{x \in D_r \setminus X} \frac{1}{|X|} \|\psi_X\| \\
\leq |D' \setminus D_r| \|\Psi\| + |D_r| \sum_{X \supset X \ni X_0 : \text{diam}(X) > r} \frac{1}{|X|} \|\psi_X\|. \tag{4.3}
\]

Using (4.3) we have, for any r,

\[
\limsup_{n \to \infty} \frac{1}{|\Lambda(n)|} \|K_{\Lambda(n)} - K_{\Lambda(kl)}\| \\
\leq \lim_{n \to \infty} \left[\frac{|\Lambda(n) \setminus \Lambda_r(kl)|}{|\Lambda(n)|} \|\Psi\| + \frac{|\Lambda_r(kl)|}{|\Lambda(n)|} \sum_{X : \text{diam}(X) > r} \frac{1}{|X|} \|\psi_X\| \right] \\
= \sum_{X : \text{diam}(X) > r} \frac{1}{|X|} \|\psi_X\|.
\]

Since r is arbitrary we have

\[
\limsup_{n \to \infty} \frac{1}{|\Lambda(n)|} \|K_{\Lambda(n)} - K_{\Lambda(kl)}\| = 0. \tag{4.4}
\]

Using (4.3) again we have

\[
\limsup_{n \to \infty} \frac{1}{|\Lambda(n)|} \left\| \sum_{j=1}^{k^d} \left(K_{C_j} - K_{C_j} \right) \right\| \\
\leq \lim_{n \to \infty} \frac{k^d |\Lambda(l)|}{|\Lambda(l)|} \left[\frac{|\Lambda(l) \setminus \Lambda_r(m)|}{|\Lambda(l)|} \|\Psi\| + \frac{|\Lambda_r(m)|}{|\Lambda(l)|} \sum_{X : \text{diam}(X) > r} \frac{1}{|X|} \|\psi_X\| \right].
\]

If $r = h(m)$ with $\lim_{m \to \infty} h(m) = \infty$ and $\lim_{m \to \infty} h(m)/m = 0$, we get

\[
\limsup_{n \to \infty} \frac{1}{|\Lambda(n)|} \left\| \sum_{j=1}^{k^d} \left(K_{C_j} - K_{C_j} \right) \right\| = o(m). \tag{4.5}
\]
Finally

\[
\left\| K_{\Lambda (kl)} - \sum_{j=1}^{k^d} K_{\tilde{C}_j} \right\| \leq \sum_{X \subseteq \Lambda (kl) \setminus \tilde{C}_j} \| \psi_X \| = \sum_{X \subseteq \Lambda (kl) \setminus \tilde{C}_j} \frac{|X \cap \tilde{C}_j|}{|X|} \| \psi_X \|
\]

\[
\leq |\Lambda (kl)| \frac{1}{|\Lambda (l)|} \sum_{j=1}^{k^d} \frac{1}{|\tilde{C}_j|} \sum_{X \subseteq \tilde{C}_j} \frac{|X \cap \tilde{C}_j|}{|X|} \| \psi_X \| = |\Lambda (kl)| d(\Psi, l) \tag{4.6}
\]

with

\[
d(\Psi, l) = \frac{1}{|\Lambda (l)|} \sum_{X \subseteq \Lambda (l)} \frac{|X \cap \Lambda (l)|}{|X|} \| \psi_X \| = \sum_{x \in \Lambda (l)} \sum_{X \supseteq \Lambda (l)} \frac{1}{|X||\Lambda (l)|} \| \psi_X \|
\]

\[
\leq \frac{|\Lambda_r (l)|}{|\Lambda (l)|} \sum_{diam(X) > r} \frac{1}{|X|} \| \psi_X \| + \frac{|\Lambda (l)| - |\Lambda_r (l)|}{|\Lambda (l)|} \| \Psi \|. \tag{4.7}
\]

Since \(l = m + 2g(m) \) if we pick \(r = h(m) \) as above we get

\[
\limsup_{n \to \infty} \frac{1}{|\Lambda (n)|} \left\| K_{\Lambda (kl)} - \sum_{j=1}^{k^d} K_{\tilde{C}_j} \right\| = o(m) \tag{4.8}
\]

Combining the bounds (4.4), (4.5), and (4.8) concludes the proof of Lemma 4.1.

Proof of Corollary 4.2: An easy estimate shows that the difference between

\[
\| |\Lambda (n)|^{-1} K_{\Lambda (n)} - |\Lambda (km)|^{-1} \sum_{j=1}^{k^d} K_{C_j} \| \text{ and } |\Lambda (n)|^{-1} \| K_{\Lambda (n)} - \sum_{j=1}^{k^d} K_{C_j} \| \text{ is } O(g(m)/m\| \Psi \|). \]

The second fact is a general remark on the strategy to prove the existence of a concave RL function [23]

Remark 4.3 Let \(x, x_1, x_2 \) such that \(\frac{1}{2} (x_1 + x_2) = x \) and let \(0 < \varepsilon' < \varepsilon \). To prove the existence of a concave RL-function it is enough to prove that

\[
m(B_\varepsilon (x)) \geq \frac{m(B_{\varepsilon'} (x_1)) + m(B_{\varepsilon'} (x_2))}{2}. \tag{4.9}
\]

Indeed if we set \(x_1 = x_2 = x \) in (4.9) then we obtain

\[
s(x) \geq s'(x),
\]

and therefore the Ruelle-Lanford function \(s(x) \) exists. Using then (4.9) again we obtain that

\[
s(x) \geq \frac{s(x_1) + s(x_2)}{2}.
\]

Since \(s(x) \) is upper-semicontinuous, this implies that \(s(x) \) is concave.

10
4.2 Tracial state and conserved quantities

In this section we prove a quantum large deviation theorem in the simplest possible case. We bypass a number of issues associated to taking thermodynamic limits for the states by considering first the finite volume Gibbs states

\[\omega_{\Lambda(n)}(A) = \frac{\text{tr}(Ae^{-H_{\Lambda(n)}})}{\text{tr}(e^{-H_{\Lambda(n)}})}. \]

In addition we assume that the Hamiltonian and the macroscopic observables \(K_{\Lambda} \) is a conserved quantity, i.e., the commutators \([K_{\Lambda}, H_{\Lambda}]\) vanish for all \(\Lambda \). Note that, although very restrictive, this condition is, in general, satisfied for thermodynamic quantities such as magnetization, density, energy, etc... The following theorem provides a (weak) justification that macroscopic conserved quantities are exponentially concentrated in equilibrium.

A important special case is the case where \(H_{\Lambda} = 0 \), that is one consider the tracial state \(\text{tr} \). In this case any observable \(K_{\Lambda} \) can be chosen arbitrarily and the rate function \(s(x) \) is the microcanonical entropy whose existence is of course well-known. The large deviation statement for the tracial state can be found e.g. in [36]; the only novelty here, maybe, is a very simple proof.

Theorem 4.4 Let \(\Phi \) and \(\Psi \) be interaction with \(\|\Phi\| < \infty \) and \(\|\Psi\| < \infty \). Suppose that the commutators \([K_{\Lambda(n)}, H_{\Lambda(n)}]\) commute for all \(n \). Then the probability measures

\[\mu_n(A) = \frac{\text{tr}(I_A ([\Lambda(n)]^{-1}K_{\Lambda(n)}) e^{-H_{\Lambda(n)}})}{\text{tr}(e^{-H_{\Lambda(n)}})}, \]

satisfies a large deviation principle on the scale \(|\Lambda(n)| \) with a concave rate function \(s(x) \). We have

\[\sup_x (\alpha x + s(x)) = P(\alpha), \quad s(x) = \inf_\alpha (P(\alpha) - \alpha x) \]

where \(P(\alpha) = \lim_{n \to \infty} |\Lambda(n)|^{-1} \log \text{tr}(e^{-H_{\Lambda(n)} + \alpha K_{\Lambda(n)}}) \) is the translated free energy.

Proof: Let us choose \(x, x_1, x_2 \) and \(\varepsilon, \varepsilon' \) as in Remark 4.3. Given \(n > m \) let \(k \) be the even integer such that \(n = km + r \) with \(0 \leq r < 2m - 1 \) (having \(k \) even is useful later). Divide the cube \(\Lambda(km) \) into \(k^d \) disjoint contiguous cubes \(C_j, j = 1, \ldots, k^d \) each of which is a translate of the cube \(\Lambda(m) \).

Let us denote by \(\lambda_j^{(n)} \) the eigenvalues of \(H_{\Lambda(n)} \) and by \(\mu_j^{(n)} \) the eigenvalues of \(K_{\Lambda(n)} \). Since \(H_{\Lambda(n)} \) and \(K_{\Lambda(n)} \) commute we have

\[\mu_n(B_\varepsilon(x)) = \frac{\sum_{j: \mu_j^{(n)} \in B_\varepsilon(x)} e^{-\lambda_j^{(n)}}}{\sum_j e^{-\lambda_j^{(n)}}}. \quad (4.10) \]
By Corollary 4.2 we can choose M and $N = N_m$ so that for $m > M$ and $n > N$ we have
\[
\left| |\Lambda(n)|^{-1}K_{\Lambda(n)} - |\Lambda(km)|^{-1} \sum_{j=1}^{k^d} K_{C_j} \right| \leq (\varepsilon - \varepsilon')
\]

Let $\mu^{(m)}$ be an eigenvalue of $K_{\Lambda(m)}$ with $\mu^{(m)}/|\Lambda(m)| \in B_\varepsilon(x_1)$ and let $\tilde{\mu}^{(m)}$ be an eigenvalue of $K_{\Lambda(m)}$ with $\tilde{\mu}^{(m)}/|\Lambda(m)| \in B_\varepsilon(x_2)$. Let us assign $\mu^{(m)}$ to each cube C_j with $j = 1, \cdots, k^d$ and $\tilde{\mu}^{(m)}$ to the each cube C_j with $j = \lfloor \frac{k^d}{2} \rfloor + 1, \cdots, k^d$. Then $\tilde{\mu}^{(m)} \equiv \frac{k^d}{2}(\mu^{(m)} + \tilde{\mu}^{(m)})$ is an eigenvalue of $\sum_j K_{C_j}$ such that $\tilde{\mu}^{(m)}/|\Lambda(km)| \in B_\varepsilon(x)$. For $m > M$ and $n \geq N = N_m$, by Weyl’s perturbation theorem, for any choice of $\mu^{(m)}$ and $\tilde{\mu}^{(m)}$ there exists an eigenvalue $\mu^{(n)}$ of $K_{\Lambda(n)}$ such that $\mu^{(n)}/|\Lambda(n)| \in B_\varepsilon(x)$.

Assume that the eigenvalues $\lambda^{(n)}_i$ of $H_{\Lambda(n)}$ are listed in increasing order, counting multiplicity. Let $\hat{\lambda}^{(n)}_i$ be the eigenvalues of $\sum_j H_C \otimes 1_{\Lambda(n) \setminus \Lambda(km)}$ also listed in increasing order. By Weyl’s perturbation theorem, and Lemma 4.1, there exists M' such that for $m > M'$ there exists $N' = N'_{m'}$ such that $n \geq N'$ we have
\[
\hat{\lambda}^{(n)}_i - |\Lambda(n)|F(m) \leq \lambda^{(n)}_i \leq \hat{\lambda}^{(n)}_i + |\Lambda(n)|F(m).
\]

Using the formula (4.10) we obtain that
\[
\mu_n(B_\varepsilon(x)) \geq \mu_m(B_\varepsilon(x_1)) \frac{k^d}{2} \mu_m(B_\varepsilon(x_2)) \frac{k^d}{2} e^{-2|\Lambda(n)|F(m)}
\]
and thus
\[
\frac{\log \mu_n(B_\varepsilon(x))}{|\Lambda(n)|} \geq \left(\frac{\log \mu_m(B_\varepsilon(x_1))}{2|\Lambda(m)|} + \frac{\log \mu_m(B_\varepsilon(x_2))}{2|\Lambda(m)|} \right) \frac{k^d|\Lambda(m)|}{|\Lambda(n)|} - 2F(m)
\]
To conclude we take first a lim inf over n keeping m fixed and then choose a subsequence m_ℓ such that $\lim_{\ell \to \infty} |\Lambda(m_\ell)|^{-1} \log \mu_{m_\ell}(B_\varepsilon(x_1)) = \overline{m}(B_\varepsilon(x_1))$. Together with Remark 4.3 this concludes the proof of Theorem 4.4. □

Theorem 4.5 Let Φ and Ψ be interaction with $\|\Phi\| < \infty$ and $\|\Psi\| < \infty$. Suppose that the commutators $[K_{\Lambda(n)}, H_{\Lambda(n)}]$ vanish for all n. Suppose $\omega_i(\Phi)$ satisfies the condition (3.1). Then the probability measure
\[
\mu_n(A) = \omega_i(\Phi) \left(I_A \left(|\Lambda(n)|^{-1} K_{\Lambda(n)} \right) \right)
\]
satisfies a large deviation principle on the scale $|\Lambda(n)|$ with a concave rate function $s(x)$. We have
\[
\sup_{x} (\alpha x + s(x)) = P(\alpha), \quad s(x) = \inf_{\alpha} (P(\alpha) - \alpha x)
\]
where $P(\alpha) = \lim_{n \to \infty} |\Lambda(n)|^{-1} \log \text{tr} \left(e^{-H_{\Lambda(n)} + \alpha K_{\Lambda(n)}} \right)$ is the translated free energy.

12
Proof: Since
\[
\omega^{(\Phi)}\left(\mathbf{I}_A \left(|\Lambda(n)|^{-1} K_{\Lambda(n)} \right) \right) \geq e^{-c(n)} \frac{\text{tr} \left(\mathbf{I}_A \left(|\Lambda(n)|^{-1} K_{\Lambda(n)} \right) e^{-H_{\Lambda(n)}} \right)}{\text{tr} \left(e^{-H_{\Lambda(n)}} \right)}
\]
the theorem follows immediately from Theorem 4.4.

Remark 4.6 (Equivalence of ensembles) For the tracial case it is not difficult [36] to show the variational formula \(s(x) = \sup \{ s(\omega); \omega(A_\Phi) = x \} \) where \(s(\omega) \) is the specific entropy of the state \(\omega \) and that the supremum is attained exactly if \(\omega = \omega^{\beta_\Phi} \) is a Gibbs-KMS state at temperature \(\beta = \beta(x) \) with \(\beta \) chosen in such a way that \(\omega^{\beta_\Phi}(A_\Phi) = x \). This is the equivalence of ensemble: the thermodynamic function entropy can be computed via microcanonical or canonical prescriptions. Furthermore the LDP can be used to prove that suitable microcanonical states are equivalent to canonical states, see [36] for the classical case and [24, 25] for the quantum case. Non-commutative versions of equivalence of ensembles are considered in [7].

4.3 Classical subalgebras

In this section we assume that \(\omega \) is an asymptotically decoupled state and that \(\Psi \in \mathcal{B} \) is a classical interaction, i.e., there exists a classical subalgebra \(\mathcal{O}^{(cl)} \subset \mathcal{O} \) such that, for all \(X, \psi_X \in \mathcal{O}^{(cl)} \). For example if \(\Psi = \{ \psi_x \}_{x \in \mathbb{Z}^d} \) consists of only of "one-site" interaction then \(\Psi \) is classical. More generally any classical spin system is described by a classical interaction. Note that we do not assume any relation between the interaction \(\Psi \) and the state \(\omega \); if \(\omega = \omega^{\Phi} \) is a Gibbs state for the interaction \(\Phi \) then \(\Phi \) and \(\Psi \) need not commute.

As noted in Section 3.1 the restriction of \(\omega \) on \(\mathcal{O}^{(cl)} \) can be identified with a probability measure \(d\omega^{(cl)} \) on the configuration space \(\mathcal{L} \). Furthermore it is easy to see that the state \(\omega^{(cl)} \) on the \(\mathcal{C}^* \)-algebra \(\mathcal{O}^{(cl)} \simeq C(\mathcal{L}) \) is asymptotically decoupled whenever the state \(\omega \) on \(\mathcal{O} \) is asymptotically decoupled.

We have

Theorem 4.7 Let \(\Psi \) be a classical interaction with \(\| \Psi \| < \infty \) and let \(\omega \) be an asymptotically decoupled state. Then the sequence of probability measures
\[
\mu_n(A) = \omega \left(\mathbf{I}_A \left(|\Lambda(n)|^{-1} K_{\Lambda(n)} \right) \right),
\]
satisfies a large deviation principle on the scale \(|\Lambda(n)| \) with a concave rate function \(s(x) \). Moreover
\[
s(x) = \inf_{\alpha} (f(\alpha) - \alpha x)
\]
where
\[
f(\alpha) = \lim_{n \to \infty} \frac{1}{|\Lambda(n)|} \log \omega \left(\exp(\alpha K_{\Lambda(n)}) \right).
\]
Proof: The proof reduces to the classical case (see [23]) since the measures μ_n can be written as

$$\mu_n(A) = \omega^{(cl)} \left(I_A \left(\frac{1}{|\Lambda(n)|} K_{\Lambda(n)} \right) \right) = \int I_{\{ |\Lambda(n)|^{-1} K_{\Lambda(n)} \in A \}}(l) d\omega^{(cl)}(l),$$

and the restriction of $\omega^{(cl)}$ on $O^{(cl)}$ is asymptotically decoupled. Following Remark 4.3 we choose arbitrary x, x_1, x_2 such that $\frac{x_1}{x} + \frac{x_2}{x} = x$ and $0 < \varepsilon' < \varepsilon$. We divide the cube $\Lambda(n)$ as explained before Lemma 4.1. We choose M and $N = N_m$ such that for $m > M$ and $n > N$

$$\left\| \frac{1}{|\Lambda(n)|} K_{\Lambda(n)} - \frac{1}{|\Lambda(km)|} \sum_{j=1}^{k^d} K_{C_j} \right\| \leq \varepsilon - \varepsilon' \tag{4.11}$$

Let l_{C_j} be configurations such that $K_{C_j} (l_{C_j}) / |C_j| \in B_{\varepsilon'}(x_1)$ for $1 \leq j \leq \frac{k^d}{2}$ and $K_{C_j} (l_{C_j}) / |C_j| \in B_{\varepsilon'}(x_2)$ for $\frac{k^d}{2} + 1 \leq j \leq k^d$. By (4.11) any configuration $l_{\Lambda(n)}$ which coincides with l_{C_j} on all C_j satisfies $K_{\Lambda(n)} (l_{\Lambda(n)}) / |\Lambda(n)| \in B_{\varepsilon}(x)$.

Therefore using the fact that $\omega^{(cl)}$ is asymptotically decoupled we have the bound

$$\omega \left(I_{B_{\varepsilon}(x)} \left(\frac{K_{\Lambda(n)}}{|\Lambda(n)|} \right) \right) = \int I_{\{ \frac{K_{\Lambda(n)}}{|\Lambda(n)|} \in B_{\varepsilon}(x) \}} d\omega^{(cl)} \geq \int \prod_{j=1}^{k^d} I_{\{ K_{C_j} / |C_j| \in B_{\varepsilon'}(x_1) \}} \prod_{j=1}^{k^d} I_{\{ K_{C_j} / |C_j| \in B_{\varepsilon'}(x_2) \}} d\omega^{(cl)} \geq \left(\int I_{\{ \frac{K_{\Lambda(n)}}{|\Lambda(n)|} \in B_{\varepsilon'}(x_1) \}} d\omega^{(cl)} \right)^{k^d} \left(\int I_{\{ \frac{K_{\Lambda(n)}}{|\Lambda(n)|} \in B_{\varepsilon'}(x_2) \}} d\omega^{(cl)} \right)^{k^d} e^{-c(m)k^d}$$

Thus we obtain

$$\frac{\log \mu_n(B_{\varepsilon}(x))}{|\Lambda(n)|} \geq \left(\frac{\log \mu_{\Lambda}(B_{\varepsilon'}(x_1))}{2|\Lambda(m)|} + \frac{\log \mu_{\Lambda}(B_{\varepsilon'}(x_2))}{2|\Lambda(m)|} \right) k^d |\Lambda(m)| \frac{1}{|\Lambda(n)|} - \frac{1}{|\Lambda(n)|} c(m) k^d.$$

We conclude by taking the lim inf over n and then choosing a subsequence m_l such that $\lim_{l \to \infty} (|\Lambda(m_l)|)^{-1} \log \mu_{\Lambda_l}(B_{\varepsilon'}(x_1)) = \overline{\mu}(B_{\varepsilon'}(x_1))$. The identification of the rate function follows from Varadhan’s lemma. □

Remark 4.8 One can show (see [32, 29] for more details) that the rate function satisfies the following variational characterization:

$$s(x) = \sup \{ -h_{\omega^{(cl)}}(\nu, \omega^{(cl)}); \nu(A_{\Phi}) = x \}$$

where $h_{\omega^{(cl)}}$ is the classical relative entropy per unit volume, and the supremum is taken over all classical translation invariant states.
4.4 Dimension 1

Throughout this section we assume that \(d = 1 \) (so we write \(|\Lambda| = n\)) and that \(\omega \) is an asymptotically decoupled state, for example we may assume that \(\omega \) a KMS-Gibbs state for a finite range interaction. We also assume that \(\Psi \) is a finite range interaction.

The crucial estimate needed to control the effect of non-commutativity is an estimate on the difference between the spectral projections associated to \(K_{\Lambda(n)} \) and \(\sum_{j=1}^{k} K_{C_j} \) (see section 4.1). To prove this we relies on a ”cocycle estimate” proved in [1], which follows from the fact that the time-evolution \(\tau_t(A) \) of any local observable \(A \) for a finite-range quantum spin system can be extended to a entire analytic function of \(t \). This allows to prove the following ”exponential version” of Lemma 4.1.

Proposition 4.9 Let \(\Psi \) be a finite range interaction of range \(R \) and let \(\beta \in \mathbb{R} \). Then there exists a function \(F_\beta(m) = F_\beta(m,R,\Psi) \) with
\[
\lim_{m \to \infty} F_\beta(m) = 0. \tag{4.12}
\]
such that
\[
\limsup_{n \to \infty} \frac{1}{n} \log \left\| e^{\beta K_{\Lambda(n)}} e^{-\beta \sum_{j=1}^{k} K_{C_j}} \right\| \leq |\beta| F_\beta(m) \tag{4.13}
\]

Proof: The proof is an application of the results in [1], see in particular Section 4 and 5. The basic bound in [1], section 5, is that if \(A_X \in \mathcal{O}_X \) with \(\text{diam}(X) \leq R \) then there exists a constant \(D(\beta,R,\Psi) \) such that
\[
\left\| e^{\beta K_{\Lambda(n)}} e^{-\beta (K_{\Lambda(n)} - A_X)} \right\| \leq e^{\beta D(\beta,R,\Psi) X} \tag{4.14}
\]
The bound (4.14) follows from Dyson formula and estimates (uniform in \(n \)) on the dynamics in imaginary time generated by the Hamiltonian \(K_{\Lambda(n)} \). To apply these results here we write
\[
K_{\Lambda(n)} = \sum_{j=1}^{k} K_{C_j} + \sum_{X \subset \Lambda(n)} \psi_X.
\]
Let \(t_X \in \{0,1\} \) and let us define the family of interpolating Hamiltonians
\[
K_{\Lambda(n)}(\{t_X\}) = \sum_{j=1}^{k} K_{C_j} + \sum_{X \subset \Lambda(n)} t_X \psi_X.
\]
The estimates on the dynamics in [1] are easily seen to be uniform in \(\{t_X\} \) and so we can apply the bound (4.14) iteratively, changing at each step one \(t_X \) from 1 to 0. Using that \(\Psi \) has a finite range \(R \) we obtain the bound
\[
\left\| e^{\beta K_{\Lambda(n)}} e^{-\beta \sum_{j=1}^{k} K_{C_j}} \right\| \leq e^{\beta D(\beta,R,\Psi) \sum_{X \subset \Lambda(n)} \| \psi_X \|}
\]
But the sum over \(X \) is now treated exactly as Lemma 4.1 and we find \(F_\beta(m) = F(m)D(\beta, R, \Psi) \).

We use this bound to prove an exponential estimates which control how the spectral projections change when we replace \(K_\Lambda(n) \) by \(\sum_{j=1}^{k} K_{C_j} \).

Proposition 4.10 Let \(\varepsilon > \varepsilon' > 0 \). Then for any \(\alpha > 0 \) there exists a function \(\tilde{F}_\alpha(m) \) with \(\lim_{m \to \infty} \tilde{F}_\alpha(m) = 0 \) such that

\[
\limsup_{n \to \infty} \frac{1}{n} \left\| I_{B_{\varepsilon}}(x) \left((mk)^{-1} \sum_{j=1}^{k} K_{C_j} \right) I_{B_{\varepsilon'}}(x)^c \left(n^{-1} K_\Lambda(n) \right) \right\|
\leq -\alpha \left(\varepsilon - \varepsilon' - \tilde{F}_\alpha(m) \right) \tag{4.15}
\]

Proof: Let us write

\[
K_\Lambda(n) = \sum_{i} \mu_i P_i, \quad \sum_{j=1}^{k} K_{C_j} = \sum_{l} \lambda_l Q_l, \tag{4.16}
\]

where \(P_i \) and \(Q_l \) are rank-one projections and \(\mu_i \) and \(\lambda_l \) are the eigenvalues of \(K_\Lambda(n) \) and \(\sum_{j} K_{C_j} \). For any \(\beta \in \mathbb{R} \)

\[
I_{B_{\varepsilon}}(y) \left(n^{-1} K_\Lambda(n) \right) = \sum_{i; \frac{\mu_i}{n} \in B_{\varepsilon}(y)} P_i
= e^{\beta(K_\Lambda(n)-ny)} \sum_{i; \frac{\mu_i}{n} \in B_{\varepsilon}(y)} e^{-\beta(\mu_i-ny)} P_i
= e^{\beta(K_\Lambda(n)-ny)} V_{\beta,y,\delta} \tag{4.17}
\]

and

\[
I_{B_{\varepsilon'}}(x) \left((mk)^{-1} \sum_{j=1}^{k} K_{C_j} \right) = \sum_{l; \frac{\lambda_l}{mk} \in B_{\varepsilon'}(x)} Q_l
= \sum_{l; \frac{\lambda_l}{mk} \in B_{\varepsilon'}(x)} e^{\beta(\lambda_l-xn)} Q_l e^{-\beta(\sum_j K_{C_j}-xn)}
= W_{\beta,x,\varepsilon'} e^{-\beta(\sum_j K_{C_j}-xn)}, \tag{4.18}
\]

with the bounds

\[
\| V_{\beta,y,\delta} \| \leq e^{\| \beta \| n \delta}, \quad \| W_{\beta,x,\varepsilon'} \| \leq e^{\| \beta \| mk(\varepsilon'+(\frac{m-1}{n})|x|)} \tag{4.19}
\]

If \(y > x \) we choose \(\beta = \alpha > 0 \) and using the equation (4.17), (4.18) as well as
the bounds (4.13) and (4.19) we obtain

\[
\limsup_{n \to \infty} \frac{1}{n} \log \left\| I_{B^c(x)} \left((mk)^{-1} \sum_{j=1}^{k} K_{C_j} \right) I_{B^c(y)} \left(n^{-1} K_{\Lambda(n)} \right) \right\|
\]

\[
= \limsup_{n \to \infty} \frac{1}{n} \log \left\| W_{\alpha,x,c} e^{-\alpha(\sum_j K_{C_j} - nx)} e^{\alpha(K_{\Lambda(n)} - ny)} \right\|
\]

\[
\leq \limsup_{n \to \infty} \left[-\alpha(y - x) + \frac{1}{n} \log \left\| e^{-\alpha \sum_j K_{C_j}} e^{\alpha K_{\Lambda(n)}} \right\|
\right.

\left. + \frac{\alpha}{n} \left(n\delta + mk\epsilon' + (n - mk)|x| \right) \right]
\]

\[
\leq -\alpha(y - x) + \alpha F_\alpha(m) + \alpha(\delta + \epsilon') + \alpha \frac{g(m)}{m} |x|
\]

Similarly for \(y < x \) we choose \(\beta = -\alpha \) and obtain a similar bound and finally

\[
\limsup_{n \to \infty} \frac{1}{n} \log \left\| I_{B^c(x)} \left((mk)^{-1} \sum_{j=1}^{k} K_{C_j} \right) I_{B^c(x)} \left(n^{-1} K_{\Lambda(n)} \right) \right\|
\]

\[
\leq -\alpha|y - x| + \alpha F_\alpha(m) + \alpha(\delta + \epsilon') + \alpha \frac{g(m)}{m} |x|
\] \hspace{0.5cm} (4.20)

Next we choose \(\delta \) be such that \(\epsilon > 2\delta + \epsilon' \) and choose finitely many intervals \(T_l \) and \(x_l \in T_l, l = 1, \cdots, L \) such that

\[
B_\epsilon(x)^C \cap [-\|\Psi\|, \|\Psi\|] = \cup_l T_l, \quad T_l \subset B_\delta(x_l).
\]

By the principle of the largest term, and using the bound (4.20) we obtain

\[
\limsup_{n \to \infty} \frac{1}{n} \log \left\| I_{B^c(x)} \left((mk)^{-1} \sum_{j=1}^{k} K_{C_j} \right) I_{B^c(x)^C} \left(n^{-1} K_{\Lambda(n)} \right) \right\|
\]

\[
\leq \max_l \limsup_{n \to \infty} \frac{1}{n} \log \left\| I_{B^c(x)} \left((mk)^{-1} \sum_{j=1}^{k} K_{C_j} \right) I_{B_l(x)} \left(n^{-1} K_{\Lambda(n)} \right) \right\|
\]

\[
\leq -\alpha(\epsilon - \epsilon' - \delta) + \alpha \left(F_\alpha(m) + \frac{g(m)}{m} |x| \right)
\] \hspace{0.5cm} (4.21)

Since \(\delta \) is arbitrary this concludes the proof with \(\tilde{F}_\alpha(m) = F_\alpha(m) + \frac{g(m)}{m} |x| \). \(\square \)

With this estimate we can now prove
Theorem 4.11 Let $d = 1$, let ω be an asymptotically decoupled translation invariant state, and let Ψ be a finite range interaction. Then the sequence of probability measures

$$\mu_n(A) = \omega \left(I_{A} \left(n^{-1} K_{\Lambda(n)} \right) \right),$$

satisfies a large deviation principle with a concave rate function $s(x)$. Moreover

$$s(x) = \inf_{\alpha} (f(\alpha) - \alpha x)$$

where

$$f(\alpha) = \lim_{n \to \infty} n^{-1} \log \omega \left(\exp(\alpha K_{\Lambda(n)}) \right).$$

Proof: Let ω be an asymptotically decoupled state with parameters g and c. Let x, x_1, x_2 be such that $\frac{g}{2} + \frac{c}{2} = x$ and $0 < \varepsilon' < \varepsilon$. For any $n > m$ we decompose $\Lambda(n)$ as in Section 4.1. Note that

$$\bigotimes_{j=1}^{k/2} I_{B_{s'(x_1)}} \left(\frac{K_{C_j}}{m} \right) \bigotimes_{j=k/2+1}^{k} I_{B_{s'(x_2)}} \left(\frac{K_{C_j}}{m} \right) \leq I_{B_{s'(x)}} \left(\sum_{j} \frac{K_{C_j}}{mk} \right), \quad (4.22)$$

and that for any projections P and Q and a state ω we have

$$\omega(P) = \omega(PQ) + \omega((1 - Q)P + PQ(1 - Q)) + \omega((1 - Q)P(1 - Q)) \leq \omega(Q) + 2\| (1 - Q)PQ \| + \| (1 - Q)P(1 - Q) \| \leq \omega(Q) + 3\| (1 - Q)P \|. \quad (4.23)$$

Using that ω is asymptotically decoupled, and estimate (4.22)–(4.23) we obtain

$$\frac{1}{2m} \log \omega \left(I_{B_{s'(x_1)}} \left(\frac{K_{\Lambda(m)}}{m} \right) \right) + \frac{1}{2m} \log \omega \left(I_{B_{s'(x_2)}} \left(\frac{K_{\Lambda(m)}}{m} \right) \right) \leq \frac{1}{mk} \log \omega \left(\bigotimes_{j=1}^{k/2} I_{B_{s'(x_1)}} \left(\frac{K_{C_j}}{m} \right) \bigotimes_{j=k/2+1}^{k} I_{B_{s'(x_2)}} \left(\frac{K_{C_j}}{m} \right) \right) + \frac{c(m)k}{mk}$$

$$\leq \frac{1}{mk} \log \omega \left(I_{B_{s'(x)}} \left(\sum_{j} \frac{K_{C_j}}{mk} \right) \right) + \frac{c(m)}{m}$$

$$\leq \frac{1}{mk} \log \omega \left(I_{B_{s'(x)}} \left(\frac{K_{\Lambda(n)}}{mk} \right) \right) + 3 \left\| I_{B_{s'(x)}} \left(\sum_{j=1}^{k} \frac{K_{C_j}}{mk} \right) \right\| \frac{c(m)}{m}$$

Keeping m fixed we take a lim inf over n and using Proposition 4.10 we obtain

$$\frac{1}{2m} \log \omega \left(I_{B_{s'(x_1)}} \left(\frac{K_{\Lambda(m)}}{m} \right) \right) + \frac{1}{2m} \log \omega \left(I_{B_{s'(x_2)}} \left(\frac{K_{\Lambda(m)}}{m} \right) \right) \leq \left(1 + \frac{g(m)}{m} \right) \max \left\{ m(B_{s}(x)), -\alpha(\varepsilon - \varepsilon' - \bar{F}_{\alpha}(m)) \right\} + \frac{c(m)}{m}. \quad (4.24)$$
To conclude we will use the bound (4.24) repeatedly.

(a) Assume first $x = x_1 = x_2$ and assume that $s(x) > -\infty$. Choose first α so large that

$$-\frac{1}{2}\alpha(\varepsilon - \varepsilon') < m(B_\varepsilon(x))$$

and then $M = M(\alpha)$ so that $\tilde{F}_\alpha(m) \leq \frac{1}{2}(\varepsilon - \varepsilon')$ for $m > M$. By (4.24) we have then

$$\frac{1}{m}\log \omega \left(I_{B_{\varepsilon'}(x)} \left(\frac{K_{\Lambda(m)}}{m} \right) \right) \leq \left(1 + \frac{g(m)}{m} \right) m(B_\varepsilon(x)) + \frac{c(m)}{m}$$

and thus $\overline{m}(B_{\varepsilon'}(x)) \leq m(B_\varepsilon(x))$. This implies that the Ruelle function $s(x)$ exists and is finite.

(b) Assume that $s(x) > -\infty$ and $x = \frac{1}{2}(x_1 + x_2)$. Repeating the same argument as in (a) one obtains, for m large enough,

$$\frac{1}{2m}\log \omega \left(I_{B_{\varepsilon'}(x_1)} \left(\frac{K_{\Lambda(m)}}{m} \right) \right) + \frac{1}{2m}\log \omega \left(I_{B_{\varepsilon'}(x_2)} \left(\frac{K_{\Lambda(m)}}{m} \right) \right) \leq \left(1 + \frac{g(m)}{m} \right) m(B_\varepsilon(x)) + \frac{c(m)}{m}$$

and this implies that $\frac{1}{2}\overline{m}(B_{\varepsilon'}(x_1)) + \frac{1}{2}\overline{m}(B_{\varepsilon'}(x_2)) \leq m(B_\varepsilon(x))$. Thus the rate function $s(x)$ is concave wherever it is finite.

(c) Let us assume that $s(x) = -\infty$. Then for any $t > 0$ we can find ε_t such that for $\varepsilon < \varepsilon_t$ we have $m(B_\varepsilon(x)) \leq -t$. By (4.24) we have

$$\frac{1}{m}\log \omega \left(I_{B_{\varepsilon'}(x)} \left(\frac{K_{\Lambda(m)}}{m} \right) \right) \leq \left(1 + \frac{g(m)}{m} \right) \max\{-t, -\alpha(\varepsilon - \varepsilon' - \tilde{F}_\alpha(m))\} + \frac{c(m)}{m}$$

and thus taking $m \to \infty$ we obtain

$$\overline{m}(B_{\varepsilon'}(x)) \leq \max\{-t, -\alpha(\varepsilon - \varepsilon')\}$$

and so

$$\overline{\pi}(x) \leq \max\{-t, -\alpha\varepsilon\}$$

Since α and t are arbitrary we have $\overline{\pi}(x) = -\infty$.

(d) Assume that $s(x) = -\infty$ and $x = \frac{1}{2}(x_1 + x_2)$. Repeating the same argument as in (c) for any $t > 0$ there exists $\varepsilon_t > 0$ such that for all $\alpha > 0$,

$$\frac{1}{2m}\log \omega \left(I_{B_{\varepsilon'}(x_1)} \left(\frac{K_{\Lambda(m)}}{m} \right) \right) + \frac{1}{2m}\log \omega \left(I_{B_{\varepsilon'}(x_2)} \left(\frac{K_{\Lambda(m)}}{m} \right) \right) \leq \left(1 + \frac{g(m)}{m} \right) \max\{-t, -\alpha(\varepsilon_t - \varepsilon' - \tilde{F}_\alpha(m))\} + \frac{c(m)}{m}$$

and thus taking $m \to \infty$ we obtain

$$\overline{m}(B_{\varepsilon'}(x)) \leq \max\{-t, -\alpha(\varepsilon_t - \varepsilon')\}$$

and so

$$\overline{\pi}(x) \leq \max\{-t, -\alpha\varepsilon_t\}$$

Since α and t are arbitrary we have $\overline{\pi}(x) = -\infty$.
and this implies that \(\frac{1}{2}m(B,\epsilon(x_1)) + \frac{1}{2}m(B,\epsilon'(x_2)) \leq \max\{-t,-\alpha(\epsilon - \epsilon')\} \).

Hence we obtain
\[
\frac{1}{2}s(x_1) + \frac{1}{2}s(x_2) = \frac{1}{2}s(x_1) + \frac{1}{2}s(x_2) = -\infty \leq s(x).
\]

Combining (a), (b), (c), and (d) shows the existence of a concave RL-function and this concludes the proof of Theorem 4.11.

Remark 4.12 A characterization of the rate function using classical relative entropies is proved in [29].

References

