1. A curve is given by the equation $x^2 + xy + y^2 = 3$.

(a) (10) Compute the derivative $\frac{dy}{dx}$ of the curve at the point $(1, 1)$.

ANS:

$$\frac{d}{dx}(x^2 + xy + y^2) = \frac{d}{dx}(3)$$

or

$$2x + x \frac{dy}{dx} + y + 2y \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = \frac{-2x + y}{x + 2y}$$ (6 pts)

and

$$\frac{dy}{dx} \bigg|_{(1,1)} = -\frac{2x + y}{x + 2y} \bigg|_{(1,1)} = -\frac{1}{1} = -1$$ (4 pts)

(b) (10) Find the points where the tangent to the curve is horizontal.

ANS:

The tangent line is horizontal at a point (x, y) when

$$\frac{dy}{dx} = 0 \Rightarrow -\frac{2x + y}{x + 2y} = 0 \Rightarrow 2x + y = 0 \Rightarrow y = -2x$$ (4 pts)

Now, (x, y) must also satisfy the equation for the curve, so

$$x^2 + x(-2x) + (-2x)^2 = 3 \Rightarrow x^2 = 1 \Rightarrow x = \pm 1$$ (4 pts)

This gives the x values, so the points are $(1, -2)$ and $(-1, 2)$ (2 pts).

2. Differentiate the following functions

(a) (10) $f(x) = \sqrt{\ln(\tan(x))}$

ANS:

$$\frac{d}{dx} \sqrt{\ln(\tan(x))} = \frac{d}{dx} (\ln(\tan(x)))^{1/2}$$

$$= \frac{1}{2} (\ln(\tan(x)))^{-1/2} \frac{1}{\tan(x)} \sec^2(x).$$
(b) (10) \(f(x) = x^{6x}e^{x^2-1} \)

ANS: There is no way to do this problem without logarithmic differentiation.

\[
f(x) = x^{6x}e^{x^2-1}
\]

\[
\ln(f(x)) = \ln(x^{6x}e^{x^2-1}) = \ln(x^{6x}) + \ln(e^{x^2-1}) = 6x \ln(x) + x^2 - 1
\]

\[
\frac{d}{dx} \ln(f(x)) = \frac{d}{dx}(6x \ln(x)) + \frac{d}{dx}(x^2 - 1)
\]

\[
= \frac{d}{dx}(6x \ln(x)) + 2x \quad \text{Use the product rule on the first term.}
\]

\[
= 6x \frac{1}{x} + 6 \ln(x) + 2x
\]

\[
\frac{f'(x)}{f(x)} = 6 + 6 \ln(x) + 2x \quad \text{Multiplying both sides by } f(x)
\]

\[
f'(x) = f(x)(6 + 6 \ln(x) + 2x)
\]

\[
f'(x) = x^{6x}e^{x^2-1}(6 + 6 \ln(x) + 2x)
\]

You may also use the product rule with \(u = x^{6x} \) and \(v = e^{x^2-1} \). But you will still need logarithmic differentiation to find \(u' = x^{6x} \left(6x \frac{1}{x} + 6 \ln(x)\right) \) see example 8 in section 3.8 (pg. 247) in the text book for a calculation similar to the one for \(u' \). You will also need to find \(v' = 2xe^{x^2-1} \) using the chain rule.

3. Let \(f(x) = e^{3x} + \sin(x) \).

(a) (12) Compute the first three derivatives \(f'(x), f''(x), f'''(x) \).

ANS:

\[
f'(x) = 3e^{3x} + \cos(x),
\]

\[
f''(x) = 3(3e^{3x}) - \sin(x) = 9e^{3x} - \sin(x),
\]

\[
f'''(x) = 9(3e^{3x}) - \cos(x) = 27e^{3x} - \cos(x).
\]

(b) (8) Find \(f^{(37)}(0) \).
ANS:

\[f^{(37)}(x) = 3^{37} e^{3x} + \cos(x), \]
\[f^{(37)}(0) = 3^{37} e^0 + \cos(0) = 3^{37} + 1. \]

4. In a building which is 100 ft high, a woman takes an elevator at the top of the building and moves downward at a speed of 16 ft/sec. At exactly the same time a man exits the building and travels along a straight line at a speed of 3ft/sec. Find the rate of increase of the distance between the man and woman after 5 seconds.

ANS:
Let \(x \) be the (horizontal) distance between the bottom of the building and the man and let \(y \) be the (vertical) distance between the bottom of the building and the woman.

The distance \(z \) between the man and the woman is related to \(x \) and \(y \) by

\[z^2 = x^2 + y^2. \]

We know that at time 0 we have \(x(0) = 0 \) and \(y(0) = 100 \) and that

\[\frac{dx}{dt} = 3 \quad \text{and} \quad \frac{dy}{dt} = -16 \]

(Be careful about the sign!)

After 5 seconds, we have \(x(5) = 3 \times 5 = 15 \) and \(y(5) = 100 - 5 \times 16 = 20 \).

Therefore the distance between the man and the woman after 5 seconds is

\[\sqrt{20^2 + 15^2} = \sqrt{625} = 25. \]

If we differentiate the relation \(z^2 = x^2 + y^2 \) with respect to \(t \) we find

\[2z \frac{dz}{dt} = 2x \frac{dx}{dt} + 2y \frac{dy}{dt}, \]

or

\[\frac{dz}{dt} = \frac{x \frac{dx}{dt} + y \frac{dy}{dt}}{z}. \]

After 5 seconds

\[\frac{dz}{dt} = \frac{15 \times 3 + 20 \times (-16)}{25} = -11. \]

5. If a piece of chalk is thrown vertically upward with a velocity of 32ft/sec, then the height after the \(t \) seconds is

\[s(t) = 32t - 16t^2. \]
(a) (4) Find the velocity of the piece of chalk after 2 seconds.

ANS:

\[v(t) = 32 - 32t \]

so that \(v(2) = 32 - 64 = -32 \). The velocity after 2 seconds is \(-32\text{ft/sec}\).

(b) (4) When is the piece of chalk at rest?

ANS:

At rest when \(v(t) = 32(1 - t) = 0 \), i.e., \(t = 1 \).

(c) (4) What is the acceleration?

ANS:

\[a(t) = -32 \]

(d) (4) When is the piece of chalk speeding up/slowing down?

ANS:

Speeding up if \(a < 0, v < 0 \), i.e., for \(1 < t \). Slowing down if \(a < 0, v > 0 \), i.e., for \(1 > t \).

(e) (4) What is the velocity of the piece of chalk when it is 12 ft above the ground on its way up?

ANS:

\[s(t) = 32t - 16t^2 = 12 \]

if \(t^2 - 2t + \frac{3}{4} = 0 \) which gives

\[t_1 = \frac{1}{2}, t_2 = \frac{3}{2} \].

In the first case \(v\left(\frac{1}{2}\right) = 16 \), in the second \(v\left(\frac{3}{2}\right) = -16 \). This shows that the chalk is on its way up when \(t = \frac{1}{2} \) and then the velocity is 16ft/sec.