Homework Problems

1) Problems 2, 5 from section 2.2.
2) Problems 6, 7 from section 2.3

Practice Problems on 2.2-2.3

1. Find the solution to the diffusion equation which satisfies: \(u_t = 3u_{xx}, \)
\(u(x,0) = x^2 + 2x. \) Find where in the rectangle \(0 \leq x \leq 2, \) \(0 \leq t \leq T \) the maximum and minimum occur and identify that point in the \(x-t \) space-time plot.

2. Show that the wave equation has the following invariance properties, assuming that \(u(x,t) \) is a solution of
\[u_{tt} = c^2 u_{xx} \]
- For \(y \) fixed, \(u(x-y,t) \) is also a solution of the wave equation.
- \(u_x(x,t) \) is also a solution of the wave equation.
- \(u(ax,at) \) for constant \(a \) is also a solution of the wave equation.

3. Consider the diffusion equation on \((0,L) \) with Robin boundary conditions \(u_x(0,t) = a_0u(0,t) \) and \(u_x(L,t) = -a_1u(L,t) \) \((a_0, a_1 > 0). \) Show that the boundary contributes to the decrease (in time) of \(\int_0^L u^2 dx. \)